Boundedness and compactness of Volterra type integral operators

被引:22
作者
Oinarov, R. [1 ]
机构
[1] Gumilev Eurasian Natl Univ, Astana, Kazakhstan
关键词
integral operator; Volterra type integral operator; operator of fractional integration; boundedness; compactness;
D O I
10.1007/s11202-007-0091-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce some nested classes of Volterra type integral operators. For the operators of these classes we establish criteria for boundedness and compactness in Lebesgue spaces.
引用
收藏
页码:884 / 896
页数:13
相关论文
共 21 条
[1]  
BAIARYSTANOV AO, 1996, UNPUB KAZNIINTI KA93
[2]  
BAIARYSTANOV AO, 1993, UNPUB KAZNIINTI KA93
[3]  
BAIDELDINOV BL, 1996, DOKL NAN RK, P16
[4]  
BEREZHNOI EI, 1992, T MAT I STEKLOVA, V201, P14
[5]   WEIGHTED NORM INEQUALITIES FOR OPERATORS OF HARDY TYPE [J].
BLOOM, S ;
KERMAN, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (01) :135-141
[6]  
DYNKIN EM, 1983, ITOGI NAUKI TEKHN MA, V21, P42
[7]   ON THE SINGULAR NUMBERS OF CERTAIN VOLTERRA INTEGRAL-OPERATORS [J].
EDMUNDS, DE ;
STEPANOV, VD .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 134 (01) :222-246
[8]  
Krasnosel'skii M. A., 1966, Integral operators in spaces of summable functions
[9]   WEIGHTED INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS OF ORDER ONE AND GREATER [J].
MARTINREYES, FJ ;
SAWYER, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (03) :727-733
[10]  
OINAROV R, 1991, DOKL AKAD NAUK SSSR+, V319, P1076