Norms of embeddings of logarithmic Bessel potential spaces

被引:26
作者
Edmunds, DE [1 ]
Gurka, P
Opic, B
机构
[1] Univ Sussex, Ctr Math Anal & Its Applicat, Brighton BN1 9QH, E Sussex, England
[2] Czech Univ Agr, Dept Math, Prague 16521 6, Czech Republic
[3] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
关键词
generalized Lorentz-Zygmund spaces; logarithmic Bessel potential spaces; Orlicz spaces of double and single exponential types; equivalent norms; embeddings;
D O I
10.1090/S0002-9939-98-04327-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a subset of R-n with finite volume, let nu > 0 and let Phi be a Young function with Phi(t) = exp(exp t(nu)) for large t. We show that the norm on the Orlicz space L-Phi(Omega) is equivalent to [GRAPHICS] We also obtain estimates of the norms of the embeddings of certain logarithmic Bessel potential spaces in L-q(Omega) which are sharp in their dependences on q provided that q is large enough.
引用
收藏
页码:2417 / 2425
页数:9
相关论文
共 16 条
[11]   Sobolev imbedding theorems in borderline cases [J].
Fusco, N ;
Lions, PL ;
Sbordone, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (02) :561-565
[12]  
Kufner A., 1977, FUNCTION SPACES
[13]   TRUDINGERS EXTENSION OF SOBOLEVS INEQUALITIES [J].
STRICHARTZ, RS .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 21 (09) :841-+
[14]  
TRIEBEL H, 1993, P LOND MATH SOC, V66, P589
[15]  
TRUDINGER NS, 1967, J MATH MECH, V17, P473
[16]  
ZIEMER W, 1989, GRADUATE TEXTS MATH, V120