Formal asymptotic limit of a diffuse-interface tumor-growth model

被引:26
|
作者
Hilhorst, Danielle [1 ]
Kampmann, Johannes [2 ]
Thanh Nam Nguyen [1 ]
Van Der Zee, Kristoffer George [3 ]
机构
[1] Univ Paris 11, Math Lab, CNRS, F-91405 Orsay, France
[2] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[3] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
来源
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES | 2015年 / 25卷 / 06期
关键词
Reaction-diffusion system; singular perturbation; interface motion; matched asymptotic expansion; tumor-growth model; phase-field model; gradient flow; stabilized Crank-Nicolson method; convex-splitting scheme; CAHN-HILLIARD EQUATION; PHASE FIELD MODEL; SINGULAR LIMIT; SIMULATION; CONVERGENCE; BOUNDARY;
D O I
10.1142/S0218202515500268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a diffuse-interface tumor-growth model which has the form of a phase-field system. We characterize the singular limit of this problem. More precisely, we formally prove that as the coefficient of the reaction term tends to infinity, the solution converges to the solution of a novel free boundary problem. We present numerical simulations which illustrate the convergence of the diffuse-interface model to the identified sharp-interface limit.
引用
收藏
页码:1011 / 1043
页数:33
相关论文
共 50 条