Stability Analysis of Fractional-order Differential Equation with Time Delay and Applications in Fractional Logistic Equation

被引:0
|
作者
Zhang, Hongwei [1 ]
Jin, Niu [1 ]
Hu, Qingying [1 ]
机构
[1] Henan Univ Technol, Dept Math, Zhengzhou 450001, Peoples R China
关键词
stability; fractional-order differential equation; time delay; fractional logistic equation;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the stability of the equilibrium point for fractional-order differential equation with time delay is considered. Some stability conditions for a class fractional-order differential equation with time delay are given. The results are applied to delayed fractional logistic equation arising from biology.
引用
收藏
页码:879 / 881
页数:3
相关论文
共 50 条
  • [1] On the fractional-order logistic equation
    El-Sayed, A. M. A.
    El-Mesiry, A. E. M.
    El-Saka, H. A. A.
    APPLIED MATHEMATICS LETTERS, 2007, 20 (07) : 817 - 823
  • [2] Fractional-Order Delay Differential Equation with Separated Conditions
    Borisut, Piyachat
    Auipa-arch, Chaiwat
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 842 - 853
  • [3] A Fractional Spline Collocation Method for the Fractional-order Logistic Equation
    Pitolli, Francesca
    Pezza, Laura
    APPROXIMATION THEORY XV, 2017, 201 : 307 - 318
  • [4] On the stability of a fractional-order differential equation with nonlocal initial condition
    El-Sayed, A. M. A.
    Abd El-Salam, Sh. A.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2008, (29) : 1 - 8
  • [5] Block Diagram Modeling and Simulation for Delay Fractional-Order Differential Equation
    Bai, Lu
    Xue, Dingyu
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 137 - 142
  • [6] On the Fractional-Order Logistic Equation with Two Different Delays
    El-Sayed, Ahmed M. A.
    El-Saka, Hala A. A.
    El-Maghrabi, Esam M.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (3-4): : 223 - 227
  • [7] Fractional-Order Logistic Differential Equation with Mittag-Leffler-Type Kernel
    Area, Ivan
    Nieto, Juan J.
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [8] Numerical Studies for Fractional-Order Logistic Differential Equation with Two Different Delays
    Sweilam, N. H.
    Khader, M. M.
    Mahdy, A. M. S.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [9] Dynamic analysis of the fractional-order logistic equation with two different delays
    El-Saka, H. A. A.
    El-Sherbeny, D. El. A.
    El-Sayed, A. M. A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06):
  • [10] Stability analysis of a fractional-order delay Logistic model with feedback control
    Pan, Feng
    Cui, Xinshu
    Xue, Dingyu
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3871 - 3875