Ritz-Volterra reconstructions and a posteriori error analysis of finite element method for parabolic integro-differential equations

被引:13
|
作者
Reddy, G. Murali Mohan [1 ]
Sinha, Rajen K. [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, India
关键词
parabolic integro-differential equation; finite element method; semidiscrete; fully discrete; optimal a posteriori error estimate; ELLIPTIC RECONSTRUCTION; STABILITY;
D O I
10.1093/imanum/drt059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a posteriori error estimates for both semidiscrete and implicit fully discrete backward Euler method for linear parabolic integro-differential equations in a bounded convex polygonal or polyhedral domain. A novel space-time reconstruction operator is introduced, which is a generalization of the elliptic reconstruction operator [2003, SIAM J. Numer. Anal., 41, pp. 1585-1594], and we call it as Ritz-Volterra reconstruction operator. The Ritz-Volterra reconstruction operator in conjunction with the linear approximation of the Volterra integral term is used in a crucial way to derive optimal order a posteriori error estimates in L-az(L-2) and L-2(H-1)-norms. The related a posteriori error estimates for the Ritz-Volterra reconstruction error are also established. We allow only nested refinement of the space meshes for the fully discrete analysis.
引用
收藏
页码:341 / 371
页数:31
相关论文
共 50 条
  • [1] A Posteriori Error Analysis of the Crank–Nicolson Finite Element Method for Parabolic Integro-Differential Equations
    G. Murali Mohan Reddy
    Rajen Kumar Sinha
    José Alberto Cuminato
    Journal of Scientific Computing, 2019, 79 : 414 - 441
  • [2] A Posteriori Error Analysis of the Crank-Nicolson Finite Element Method for Parabolic Integro-Differential Equations
    Reddy, G. Murali Mohan
    Sinha, Rajen Kumar
    Cuminato, Jose Alberto
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 414 - 441
  • [3] The backward euler anisotropic a posteriori error analysis for parabolic integro-differential equations
    Reddy, Gujji Murali Mohan
    Sinha, Rajen Kumar
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (05) : 1309 - 1330
  • [4] A priori and a posteriori error analysis for a system of singularly perturbed Volterra integro-differential equations
    Jaiswal, Aishwarya
    Kumar, Shashikant
    Kumar, Sunil
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [5] A priori and a posteriori error analysis for a system of singularly perturbed Volterra integro-differential equations
    Aishwarya Jaiswal
    Shashikant Kumar
    Sunil Kumar
    Computational and Applied Mathematics, 2023, 42
  • [6] FINITE ELEMENT METHOD FOR A CLASS OF PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH INTERFACES
    Deka, B.
    Deka, R. C.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2013, 44 (06): : 823 - 847
  • [7] THE FINITE ELEMENT PROBABILITY COMPUTATIONAL METHOD FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
    LIU Xiaoqi
    LIU Jinwang(Department of Mathematics
    SystemsScienceandMathematicalSciences, 1999, (04) : 378 - 382
  • [8] Finite element method for a class of parabolic integro-differential equations with interfaces
    B. Deka
    R. C. Deka
    Indian Journal of Pure and Applied Mathematics, 2013, 44 : 823 - 847
  • [9] ON THE CRANK-NICOLSON ANISOTROPIC A POSTERIORI ERROR ANALYSIS FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
    Reddy, G. Murali Mohan
    Sinha, Rajen K.
    MATHEMATICS OF COMPUTATION, 2016, 85 (301) : 2365 - 2390
  • [10] Finite element analysis of parabolic integro-differential equations of Kirchhoff type
    Kumar, Lalit
    Sista, Sivaji Ganesh
    Sreenadh, Konijeti
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (15) : 9129 - 9150