Nonparametric Missing Sample Spectral Analysis and Its Applications to Interrupted SAR

被引:47
作者
Duc Vu [1 ]
Xu, Luzhou [1 ,2 ]
Xue, Ming [1 ]
Li, Jian [1 ,2 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] IAA Inc, Gainesville, FL 32605 USA
基金
美国国家科学基金会;
关键词
Interrupted synthetic aperture radar (SAR); iterative adaptive approach (IAA); missing data; sparse learning via iterative minimization (SLIM); spectral analysis; TIME-SERIES; MAXIMUM-LIKELIHOOD; SIGNAL RECOVERY; ALGORITHM;
D O I
10.1109/JSTSP.2011.2168192
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider nonparametric adaptive spectral analysis of complex-valued data sequences with missing samples occurring in arbitrary patterns. We first present two high-resolution missing-data spectral estimation algorithms: the Iterative Adaptive Approach (IAA) and the Sparse Learning via Iterative Minimization (SLIM) method. Both algorithms can significantly improve the spectral estimation performance, including enhanced resolution and reduced sidelobe levels. Moreover, we consider fast implementations of these algorithms using the Conjugate Gradient (CG) technique and the Gohberg-Semencul-type (GS) formula. Our proposed implementations fully exploit the structure of the steering matrices and maximize the usage of the fast Fourier transform (FFT), resulting in much lower computational complexities as well as much reduced memory requirements. The effectiveness of the adaptive spectral estimation algorithms is demonstrated via several numerical examples including both 1-D spectral estimation and 2-D interrupted synthetic aperture radar (SAR) imaging examples.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 35 条
[1]  
Andersh D. J., 1994, IEEE ANTENN PROPAG M, V36, P65
[2]  
Broersen PMT, 2003, IEEE IMTC P, P1154
[3]   SPECTRAL ESTIMATION OF IRREGULARLY SAMPLED MULTIDIMENSIONAL PROCESSES BY GENERALIZED PROLATE SPHEROIDAL SEQUENCES [J].
BRONEZ, TP .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (12) :1862-1873
[4]  
Bruder J. A., 2007, P IET INT C RAD SYST
[5]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[6]   HIGH-RESOLUTION FREQUENCY-WAVENUMBER SPECTRUM ANALYSIS [J].
CAPON, J .
PROCEEDINGS OF THE IEEE, 1969, 57 (08) :1408-&
[7]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[8]   Guaranteeing practical convergence in algorithms for sensor and source localization [J].
Fidan, Bans ;
Dasgupta, Soura ;
Anderson, Brian D. O. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (09) :4458-4469
[9]   Multitaper spectrum estimation for time series with gaps [J].
Fodor, IK ;
Stark, PB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (12) :3472-3483
[10]   Time-Recursive IAA Spectral Estimation [J].
Glentis, G. O. ;
Jakobsson, A. .
IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (02) :111-114