Surface Water Wave Topography Construction using Free Surface Synthetic Schlieren Method for Demonstration of Ripple Tank Wave Phenomena

被引:2
作者
Yapo, S. [1 ]
Seesomboon, E. [2 ]
Chattrapiban, N. [3 ,5 ]
Pussadee, N. [3 ,4 ,5 ]
机构
[1] Chiang Mai Univ, Masters Degree Program Teaching Phys, Fac Sci, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Dept Mech Engn, Fac Engn, Chiang Mai 50200, Thailand
[3] Chiang Mai Univ, Dept Phys & Mat Sci, Chiang Mai 50200, Thailand
[4] Chiang Mai Univ, Res Ctr Phys & Astron, Fac Sci, Chiang Mai 50200, Thailand
[5] Commiss Higher Educ, Thailand Ctr Excellence Phys, 328 Si Ayutthaya Rd, Bangkok 10400, Thailand
来源
SIAM PHYSICS CONGRESS 2018 (SPC2018): A CREATIVE PATH TO SUSTAINABLE INNOVATION | 2018年 / 1144卷
关键词
D O I
10.1088/1742-6596/1144/1/012119
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The ripple tank is a popular water wave phenomena demonstration tool for secondary school students. The projected wave images are observed in bright - dark patterns on a screen. This tool, however, falls short in presenting the amplitude of the waves which is another important parameter in explaining the wave phenomena. The free surface synthetic schlieren (FS-SS) method presents an immense technical tool for solving this problem. FS-SS is an optical method based on light refraction in determining the surface gradient field from the motion of a random dot pattern when the water surface is perturbed. The surface height of the wave is constructed using the inverse gradient operation on the displacement gradient field of the random dot pattern. In this work, Wave propagation, reflection, diffraction, and interference pattern surface construction were performed to visualize wave phenomena in 3D.
引用
收藏
页数:4
相关论文
共 50 条
[21]   Wave tank studies of radar Doppler shifts in the presence of surfactant films on the water surface [J].
Ermakov, SA ;
Sergievskaya, IA ;
Shchegol'kov, YB ;
Scott, JC ;
Stapleton, NR .
IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, :1111-1113
[22]   Free-surface flow past arbitrary topography and an inverse approach for wave-free solutions [J].
Binder, Benjamin J. ;
Blyth, M. G. ;
McCue, Scott W. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (04) :685-696
[23]   Finite-difference method for modeling the surface wave propagation with surface topography in anisotropic-viscoelastic media [J].
Zhou, Xuhui ;
Huo, Shoudong ;
Liang, Yao ;
Dong, Shuli .
JOURNAL OF APPLIED GEOPHYSICS, 2023, 217
[24]   Wave modification in water waves with the free surface covered by grease ice [J].
Okumura, S ;
Sato, Y ;
Enomoto, H .
PROCEEDINGS OF THE ELEVENTH (2001) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL I, 2001, :721-726
[25]   Free surface water wave 1-D LBGK predictions [J].
Frandsen, J. B. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2006, 20 (06) :427-437
[27]   A computational method for underwater sound radiation of surface ships considering the free surface wave shape [J].
Li Q. ;
Yang D.-Q. ;
Yu H. .
Chuan Bo Li Xue/Journal of Ship Mechanics, 2019, 23 (11) :1394-1403
[28]   AN EULERIAN METHOD FOR TRANSIENT NONLINEAR FREE-SURFACE WAVE PROBLEMS [J].
CHENG, SI ;
LU, Y .
JOURNAL OF COMPUTATIONAL PHYSICS, 1986, 62 (02) :429-440
[29]   Assessment of the volume of fluid method for free-surface wave flow [J].
Shin Hyung Rhee ;
Boris P. Makarov ;
H. Krishinan ;
Vladimir Ivanov .
Journal of Marine Science and Technology, 2005, 10 :173-180
[30]   Assessment of the volume of fluid method for free-surface wave flow [J].
Rhee, SH ;
Makarov, BP ;
Krishinan, H ;
Ivanov, V .
JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2005, 10 (04) :173-180