Finiteness of Calabi-Yau Quasismooth Weighted Complete Intersections

被引:2
作者
Chen, Jheng-Jie [1 ]
机构
[1] Natl Cent Univ, Dept Math, Jhongli 32001, Taiwan
关键词
PLURICANONICAL SYSTEMS; GENERAL TYPE; VARIETIES; HYPERSURFACES; BOUNDEDNESS;
D O I
10.1093/imrn/rnu049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there exist only finitely many families of Calabi-Yau quasismooth weighted complete intersections with every fixed dimension m. This generalizes a result of Johnson and Kollar to higher codimensions.
引用
收藏
页码:3793 / 3809
页数:17
相关论文
共 18 条
[1]  
Altinok S., 2002, CONT MATH, V314, P25
[2]  
[Anonymous], 1980, JOURNEES GEOMETRIE A
[3]   WEIGHTED HYPERSURFACES WITH EITHER ASSIGNED VOLUME OR MANY VANISHING PLURIGENERA [J].
Ballico, E. ;
Pignatelli, R. ;
Tasin, L. .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) :3745-3752
[4]  
Borisov A., 2001, J. Math. Sci. Univ. Tokyo, V8, P329
[5]  
Brown G., GRADED RING DATABASE
[6]   Ice cream and orbifold Riemann-Roch [J].
Buckley, A. ;
Reid, M. ;
Zhou, S. .
IZVESTIYA MATHEMATICS, 2013, 77 (03) :461-486
[7]   ON QUASISMOOTH WEIGHTED COMPLETE INTERSECTIONS [J].
Chen, Jheng-Jie ;
Chen, Jungkai A. ;
Chen, Meng .
JOURNAL OF ALGEBRAIC GEOMETRY, 2011, 20 (02) :239-262
[8]   An optimal boundedness on weak Q-Fano 3-folds [J].
Chen, Jungkai A. ;
Chen, Meng .
ADVANCES IN MATHEMATICS, 2008, 219 (06) :2086-2104
[9]  
Chen JA, 2010, ANN SCI ECOLE NORM S, V43, P365
[10]  
Dolgachev I., 1981, VANCOUVER LECT NOT M, V956, P34