Multiplicity Results for Classes of Infinite Positone Problems

被引:15
作者
Ko, Eunkyung [1 ]
Lee, Eun Kyoung [2 ]
Shivaji, R. [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Ctr Computat Sci, Mississippi State, MS 39762 USA
[2] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2011年 / 30卷 / 03期
基金
新加坡国家研究基金会;
关键词
Singular boundary value problems; infinite positone problems; multiplicity of positive solutions; sub-supersolutions;
D O I
10.4171/ZAA/1436
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study positive solutions to the singular boundary value problem { -Delta(p)u = lambda(f(u)/u beta) in Omega u = 0 on partial derivative Omega, where Delta(p)u = div (vertical bar del u vertical bar(p-2)del u), p > 1, lambda > 0, beta is an element of (0, 1) and Omega is a bounded domain in R-N, N >= 1. Here f : [0, infinity) -> (0, infinity) is a continuous nondecreasing function such that lim(u ->infinity) f(u)/u(beta+p-1) = 0. We establish the existence of multiple positive solutions for certain range of lambda when f satisfies certain additional assumptions. A simple model that will satisfy our hypotheses is f(u) = e(alpha u/alpha+u) for alpha >> 1. We also extend our results to classes of systems when the nonlinearities satisfy a combined sublinear condition at infinity. We prove our results by the method of sub-supersolutions.
引用
收藏
页码:305 / 318
页数:14
相关论文
共 9 条
[1]   Existence and multiplicity of positive solutions for classes of singular elliptic PDEs [J].
Chhetri, Maya ;
Robinson, Stephen B. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) :176-182
[2]   Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems [J].
Cui, SB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (1-2) :149-176
[3]  
DRABEK P, 1999, RES NOTES MATH, V404
[4]  
Giacomoni J, 2007, ANN SCUOLA NORM-SCI, V6, P117
[5]   Classes of infinite semipositone systems [J].
Lee, Eun Kyoung ;
Shivaji, R. ;
Ye, Jinglong .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :853-865
[6]  
Mabel C.L., 1997, ANN FACULT SCI TOULO, V6, P591, DOI [DOI 10.5802/AFST.880, 10.5802/afst.880]
[7]  
Perera K, 2007, DIFFER INTEGRAL EQU, V20, P105
[8]  
Ramaswamy M, 2004, DIFFER INTEGRAL EQU, V17, P1255
[9]   ON A DIRICHLET PROBLEM WITH A SINGULAR NONLINEARITY [J].
ZHANG, ZJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 194 (01) :103-113