Approximate Floating-Point Operations with Integer Units by Processing in the Logarithmic Domain

被引:5
作者
Gustafsson, Oscar [1 ]
Hellman, Noah [1 ]
机构
[1] Linkoping Univ, Dept Elect Engn, SE-58183 Linkoping, Sweden
来源
2021 IEEE 28TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH 2021) | 2021年
关键词
Approximate arithmetic; Floating-point; Multiplication; Division; Square-root;
D O I
10.1109/ARITH51176.2021.00019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Floating-point numbers represented using a hidden one can readily be approximately converted to the logarithmic domain using Mitchell's approximation. Once in the logarithmic domain, several arithmetic operations including multiplication, division, and square-root can be easily computed using the integer arithmetic unit. This has earlier been used in fast reciprocal square-root algorithms, sometimes referred to as magic number algorithms. The proposed approximate operations are realized by performing an integer operation using an integer unit on floating-point data and adding an integer constant to obtain the approximate floating-point result. In this work, we derive easy to use equations and constants for multiple floating-point formats and operations.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 28 条
  • [1] DLFloat: A 16-b Floating Point format designed for Deep Learning Training and Inference
    Agrawal, Ankur
    Mueller, Silvia M.
    Fleischer, Bruce M.
    Choi, Jungwook
    Wang, Naigang
    Sun, Xiao
    Gopalakrishnan, Kailash
    [J]. 2019 IEEE 26TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2019, : 92 - 95
  • [2] [Anonymous], ENTROPY-SWITZ, V23, P2021
  • [3] Ansari, IEEE T EMERG TOPICS, P1
  • [4] An Improved Logarithmic Multiplier for Energy-Efficient Neural Computing
    Ansari, Mohammad Saeed
    Cockburn, Bruce F.
    Han, Jie
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2021, 70 (04) : 614 - 625
  • [5] Floating-point tricks
    Blinn, JF
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1997, 17 (04) : 80 - 84
  • [6] Serving DNNs in Real Time at Datacenter Scale with Project Brainwave
    Chung, Eric
    Fowers, Jeremy
    Ovtcharov, Kalin
    Papamichael, Michael
    Caulfield, Adrian
    Massengill, Todd
    Liu, Ming
    Lo, Daniel
    Alkalay, Shlomi
    Haselman, Michael
    Abeydeera, Maleen
    Adams, Logan
    Angepat, Hari
    Boehn, Christian
    Chiou, Derek
    Firestein, Oren
    Forin, Alessandro
    Gatlin, Kang Su
    Ghandi, Mahdi
    Heil, Stephen
    Holohan, Kyle
    El Husseini, Ahmad
    Juhasz, Tamas
    Kagi, Kara
    Kovvuri, Ratna K.
    Lanka, Sitaram
    van Megen, Friedel
    Mukhortov, Dima
    Patel, Prerak
    Perez, Brandon
    Rapsang, Amanda Grace
    Reinhardt, Steven K.
    Rouhani, Bita Darvish
    Sapek, Adam
    Seera, Raja
    Shekar, Sangeetha
    Sridharan, Balaji
    Weisz, Gabriel
    Woods, Lisa
    Xiao, Phillip Yi
    Zhang, Dan
    Zhao, Ritchie
    Burger, Doug
    [J]. IEEE MICRO, 2018, 38 (02) : 8 - 20
  • [7] Soft digital signal processing
    Hegde, R
    Shanbhag, NR
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2001, 9 (06) : 813 - 823
  • [8] Leveraging the bfloat16 Artificial Intelligence Datatype For Higher-Precision Computations
    Henry, Greg
    Tang, Ping Tak Peter
    Heinecke, Alexander
    [J]. 2019 IEEE 26TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2019, : 69 - 76
  • [9] IEEE Computer Society, 2019, IEEE standard for floating-point arithmetic, DOI [10.1109/IEEESTD.2017.8091139, 10.1109/IEEESTD.2019.8859679, DOI 10.1109/IEEESTD.2008.4610935, 10.1109/IEEESTD.2019.8766229, DOI 10.1109/IEEESTD.2019.8766229]
  • [10] Kim M. S., IEEE T EMERG TOPICS, P2021