Error-correcting codes in attenuated space over finite fields

被引:14
作者
Gao, You [1 ]
Wang, Gang [1 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
基金
中国国家自然科学基金;
关键词
Error-correcting codes; Attenuated space; Finite field; BOUNDS;
D O I
10.1016/j.ffa.2014.12.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several bounds on the size of (n + l, M, d, (m, 0))(q) codes in attenuated space over finite fields are provided in this paper. Then, we prove that codes in attenuated space attain the Wang-Xing-Safavi-Naini bound if and only if they are certain Steiner structures. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:103 / 117
页数:15
相关论文
共 10 条
[1]   On perfect codes and related concepts [J].
Ahlswede, R ;
Aydinian, HK ;
Khachatrian, LH .
DESIGNS CODES AND CRYPTOGRAPHY, 2001, 22 (03) :221-237
[2]   Error-Correcting Codes in Projective Space [J].
Etzion, Tuvi ;
Vardy, Alexander .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) :1165-1173
[3]   Coding for errors and erasures in random network coding [J].
Koetter, Ralf ;
Kschischang, Frank R. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (08) :3579-3591
[4]  
MacWilliams F., 1978, The Theory of Error-Correcting Codes, V2nd
[5]   Codes and anticodes in the Grassman graph [J].
Schwartz, M ;
Etzion, T .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 97 (01) :27-42
[6]  
Wan Z. X., 2002, GEOMETRY CLASSICAL G
[7]   Linear authentication codes: Bounds and constructions [J].
Wang, HX ;
Xing, CP ;
Safavi-Naini, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (04) :866-872
[8]   Singular linear space and its applications [J].
Wang, Kaishun ;
Guo, Jun ;
Li, Fenggao .
FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (05) :395-406
[9]   Association schemes based on attenuated spaces [J].
Wang, Kaishun ;
Guo, Jun ;
Li, Fenggao .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) :297-305
[10]   Johnson type bounds on constant dimension codes [J].
Xia, Shu-Tao ;
Fu, Fang-Wei .
DESIGNS CODES AND CRYPTOGRAPHY, 2009, 50 (02) :163-172