On the exact speed and amplitude of solitary waves in fluid-filled elastic tubes

被引:23
作者
Epstein, M [1 ]
Johnston, CR [1 ]
机构
[1] Univ Calgary, Dept Mech & Mfg Engn, Calgary, AB T2N 1N4, Canada
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2001年 / 457卷 / 2009期
关键词
solitary waves; elastic membranes; calculus of variations;
D O I
10.1098/rspa.2000.0715
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
By casting the solitary wave problem within a variational framework, it becomes possible to find explicit first integrals, allowing for the solution of the exact amplitude of the wave by finding the roots of an algebraic system. The underlying exact membrane theory used for the tube does not impose any restrictions on the magnitude of the radial or axial displacements. It is shown that the so-called long-wave approximation is fundamentally incorrect, even for very small wave amplitudes.
引用
收藏
页码:1195 / 1213
页数:19
相关论文
共 12 条
[1]   Weakly nonlinear waves in a prestressed thin elastic tube containing a viscous fluid [J].
Antar, N ;
Demiray, H .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1999, 37 (14) :1859-1876
[2]   NOTES ON NONLINEAR SHELL THEORY [J].
BUDIANSKY, B .
JOURNAL OF APPLIED MECHANICS, 1968, 35 (02) :393-+
[3]  
Demiray H, 1996, B MATH BIOL, V58, P939
[4]  
Demiray H, 1997, INT J ENG SCI, V35, P1065, DOI 10.1016/S0020-7225(96)00118-8
[5]  
DEMIRAY H, 1998, ARI, V50, P201
[6]   Improved solution for solitary waves in arteries [J].
Epstein, M ;
Johnston, C .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 39 (01) :1-18
[7]   WAVE-PROPAGATION IN FLUID FILLED NONLINEAR VISCOELASTIC TUBES [J].
ERBAY, HA ;
ERBAY, S ;
DOST, S .
ACTA MECHANICA, 1992, 95 (1-4) :87-102
[8]  
Jeffrey A., 1982, ASYMPTOTIC METHODS N
[9]   On the exact amplitude, speed and shape of ion-acoustic waves [J].
Johnston, CR ;
Epstein, M .
PHYSICS OF PLASMAS, 2000, 7 (03) :906-910
[10]   WAVE-PROPAGATION IN A THIN-WALLED LIQUID-FILLED INITIALLY STRESSED TUBE [J].
KUIKEN, GDC .
JOURNAL OF FLUID MECHANICS, 1984, 141 (APR) :289-308