The fractal globule as a model of chromatin architecture in the cell

被引:407
作者
Mirny, Leonid A. [1 ,2 ]
机构
[1] MIT, Harvard MIT Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
chromatin; chromosome territories; conformational capture; fractal globule; CHROMOSOME; ORGANIZATION; CONSTRAINTS; LENGTH; LOOPS; KNOTS;
D O I
10.1007/s10577-010-9177-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The fractal globule is a compact polymer state that emerges during polymer condensation as a result of topological constraints which prevent one region of the chain from passing across another one. This long-lived intermediate state was introduced in 1988 (Grosberg et al. 1988) and has not been observed in experiments or simulations until recently (Lieberman-Aiden et al. 2009). Recent characterization of human chromatin using a novel chromosome conformational capture technique brought the fractal globule into the spotlight as a structural model of human chromosome on the scale of up to 10 Mb (Lieberman-Aiden et al. 2009). Here, we present the concept of the fractal globule, comparing it to other states of a polymer and focusing on its properties relevant for the biophysics of chromatin. We then discuss properties of the fractal globule that make it an attractive model for chromatin organization inside a cell. Next, we connect the fractal globule to recent studies that emphasize topological constraints as a primary factor driving formation of chromosomal territories. We discuss how theoretical predictions, made on the basis of the fractal globule model, can be tested experimentally. Finally, we discuss whether fractal globule architecture can be relevant for chromatin packing in other organisms such as yeast and bacteria.
引用
收藏
页码:37 / 51
页数:15
相关论文
共 74 条
  • [31] IMAKAEV M, 2010, FRACTAL GLOBULE MODE
  • [32] Entropy as the driver of chromosome segregation
    Jun, Suckjoon
    Wright, Andrew
    [J]. NATURE REVIEWS MICROBIOLOGY, 2010, 8 (08) : 600 - 607
  • [33] POLYMER-CHAIN IN AN ARRAY OF OBSTACLES
    KHOKHLOV, AR
    NECHAEV, SK
    [J]. PHYSICS LETTERS A, 1985, 112 (3-4) : 156 - 160
  • [34] KIND J, 2010, CURR OPIN CELL B MAY
  • [35] Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks
    Kruhlak, MJ
    Celeste, A
    Dellaire, G
    Fernandez-Capetillo, O
    Müller, WG
    McNally, JG
    Bazett-Jones, DP
    Nussenzweig, A
    [J]. JOURNAL OF CELL BIOLOGY, 2006, 172 (06) : 823 - 834
  • [36] Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome
    Lieberman-Aiden, Erez
    van Berkum, Nynke L.
    Williams, Louise
    Imakaev, Maxim
    Ragoczy, Tobias
    Telling, Agnes
    Amit, Ido
    Lajoie, Bryan R.
    Sabo, Peter J.
    Dorschner, Michael O.
    Sandstrom, Richard
    Bernstein, Bradley
    Bender, M. A.
    Groudine, Mark
    Gnirke, Andreas
    Stamatoyannopoulos, John
    Mirny, Leonid A.
    Lander, Eric S.
    Dekker, Job
    [J]. SCIENCE, 2009, 326 (5950) : 289 - 293
  • [37] Fractal and statistical properties of large compact polymers: a computational study
    Lua, R
    Borovinskiy, AL
    Grosberg, AY
    [J]. POLYMER, 2004, 45 (02) : 717 - 731
  • [38] Statistics of knots, geometry of conformations, and evolution of proteins
    Lua, Rhonald C.
    Grosberg, Alexander Y.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (05) : 350 - 357
  • [39] Micromechanical studies of mitotic chromosomes
    Marko, John F.
    [J]. CHROMOSOME RESEARCH, 2008, 16 (03) : 469 - 497
  • [40] Spatially confined folding of chromatin in the interphase nucleus
    Mateos-Langerak, Julio
    Bohn, Manfred
    de Leeuw, Wim
    Giromus, Osdilly
    Manders, Erik M. M.
    Verschure, Pernette J.
    Indemans, Mireille H. G.
    Gierman, Hinco J.
    Heermann, Dieter W.
    Van Driel, Roel
    Goetze, Sandra
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (10) : 3812 - 3817