Nanoimprinted ZnO and ZnO Quantum Dots Embedded SiO2 Layers for Inverted Bulk Heterojunction Solar Cells

被引:6
作者
Yang, Hwa-Young [1 ,2 ]
Ahmad, Rafiq [1 ,2 ]
Vaseem, Mohammad [1 ,2 ]
Rho, Won-Yeop [1 ,2 ]
Tripathy, Nirmalya [3 ,4 ]
Choi, Dae-Geun [5 ]
Hahn, Yoon-Bong [1 ,2 ]
机构
[1] Chonbuk Natl Univ, Sch Semicond & Chem Engn, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, Nanomat Proc Res Ctr, Jeonju 561756, South Korea
[3] Chonbuk Natl Univ, Dept BIN Fus Technol, Jeonju 561756, South Korea
[4] Chonbuk Natl Univ, Polymer BIN Res Ctr, Jeonju 561756, South Korea
[5] Korea Inst Machinery & Mat, Dept Nano Mfg Technol, Taejon 305343, South Korea
基金
新加坡国家研究基金会;
关键词
Nanoimprint Lithography; ZnO Layer; Hybrid Solar Cell; ZnO QDs; Silica Nanosphere; PHOTOVOLTAIC PERFORMANCE;
D O I
10.1166/sam.2015.2034
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Inverted bulk heterojunction (BHJ) solar cells have received much interest due to their stability and lifetime. The inverted bulk heterojunction solar cells are fabricated based on poly(3-hexylthiophene (P3HT)) and Phenyl-C61-butyric acid methyl ester (PCBM). Proper engineering of nanostructures can enhance the adsorption of the sunlight in solar cells. Here, we used nanoimprint lithography technique to form nanoimprinted ZnO (NI-ZnO) or ZnO quantum dots-embedded SiO2 nanoparticles (NI-SiO2@ZnO) layers on ITO substrates. The nanoimprinted layer not only provides ideal scattering characteristics for optimum light trapping, but also acts as electron transport layer. Compared to the power conversion efficiency (PCE) of 1.83% with plain ZnO layer, the devices with NI-ZnO and NI-SiO2@ZnO layers resulted in higher PCEs of 2.35% and 2.94%, respectively.
引用
收藏
页码:1253 / 1257
页数:5
相关论文
共 24 条
[1]  
Abdul Almohsin S., 2012, J PHYS CHEM C, V116, P9433, DOI [10.1021/jp301881s, DOI 10.1021/JP301881S]
[2]  
Battaglia C, 2011, NAT PHOTONICS, V5, P535, DOI [10.1038/nphoton.2011.198, 10.1038/NPHOTON.2011.198]
[3]   Effect of nanostructured ZnO cathode layer on the photovoltaic performance of inverted bulk heterojunction solar cells [J].
Bekci, D. Rana ;
Erten-Ela, Sule .
RENEWABLE ENERGY, 2012, 43 :378-382
[4]   Improved photovoltaic performance of hybrid solar cells based on silicon nanowire and P3HT [J].
Ben Dkhil, Sadok ;
Ebdelli, Rihab ;
Dachraoui, Walid ;
Faltakh, Hana ;
Bourguiga, Rarnzi ;
Davenas, Joel .
SYNTHETIC METALS, 2014, 192 :74-81
[5]   Device Performance Related to Amphiphilic Modification at Charge Separation Interface in Hybrid Solar Cells with Vertically Aligned ZnO Nanorod Arrays [J].
Bi, Dongqin ;
Wu, Fan ;
Qu, Qiyun ;
Yue, Wenjin ;
Cui, Qi ;
Shen, Wei ;
Chen, Ruiqiang ;
Liu, Changwen ;
Qiu, Zeliang ;
Wang, Mingtai .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (09) :3745-3752
[6]   Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT [J].
Boucle, Johann ;
Chyla, Sabina ;
Shaffer, Milo S. P. ;
Durrant, James R. ;
Bradley, Donal D. C. ;
Nelson, Jenny .
COMPTES RENDUS PHYSIQUE, 2008, 9 (01) :110-118
[7]   Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT:CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell [J].
Dixit, Shiv Kumar ;
Madan, Shikha ;
Madhwal, Devinder ;
Kumar, Jitender ;
Singh, Inderpreet ;
Bhatia, C. S. ;
Bhatnagar, P. K. ;
Mathur, P. C. .
ORGANIC ELECTRONICS, 2012, 13 (04) :710-714
[8]   Enhanced performance of hybrid photovoltaic devices via surface-modifying metal oxides with conjugated polymer [J].
Geng, Hongwei ;
Wang, Mingtai ;
Han, Shikui ;
Peng, Ruixiang .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (03) :547-553
[9]   Air-processed depleted bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays [J].
Gonfa, Belete Atomsa ;
Zhao, Haiguang ;
Li, Jiangtian ;
Qiu, Jingxia ;
Saidani, Menouer ;
Zhang, Shanqing ;
Izquierdo, Ricardo ;
Wu, Nianqiang ;
El Khakani, My Ali ;
Ma, Dongling .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 124 :67-74
[10]   Zinc oxide nanostructures and their applications [J].
Hahn, Yoon-Bong .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2011, 28 (09) :1797-1813