Entropy of an extremal regular black hole

被引:21
作者
Myung, Yun Soo [1 ,2 ]
Kim, Yong-Wan [1 ,2 ]
Park, Young-Jai [3 ,4 ]
机构
[1] Inje Univ, Inst Math Sci, Gimhae 621749, South Korea
[2] Inje Univ, Sch Comp Aided Sci, Gimhae 621749, South Korea
[3] Sogang Univ, Dept Phys, Seoul 121742, South Korea
[4] Sogang Univ, Ctr Quantum Spacetime, Seoul 121742, South Korea
基金
新加坡国家研究基金会;
关键词
regular black hole; nonlinear electrodynamics; entropy;
D O I
10.1016/j.physletb.2007.12.007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a magnetically charged extremal regular black hole in the coupled system of Einstein gravity and nonlinear electrodynamics. Its near horizon geometry is given by AdS(2) x S-2. It turns out that the entropy function approach does not automatically lead to a correct entropy of the Bekenstein-Hawking entropy. This contrasts to the case of the extremal Reissner-Norstrom black hole in the Einstein-Maxwell theory. We conclude that the entropy function approach does not work for a magnetically charged extremal regular black hole without singularity, because of the nonlinearity of the entropy function. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:832 / 838
页数:7
相关论文
共 50 条
[41]   A Schrodinger black hole and its entropy [J].
Sudarsky, D .
MODERN PHYSICS LETTERS A, 2002, 17 (15-17) :1047-1057
[42]   Topology in Entropy of Schwarzschild Black Hole [J].
Guo-Hong Yang .
International Journal of Theoretical Physics, 2002, 41 :953-959
[43]   Gravitational entropy of Hayward black hole [J].
Iguchi, Hideo .
ANNALS OF PHYSICS, 2023, 453
[44]   Black hole entropy without microstates [J].
Garfinkle, David .
CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (08)
[45]   Monopoles and the emergence of black hole entropy [J].
Lue, A ;
Weinberg, EJ .
GENERAL RELATIVITY AND GRAVITATION, 2000, 32 (11) :2113-2118
[46]   Edge States and Black Hole Entropy [J].
Alejandro Corichi .
General Relativity and Gravitation, 1999, 31 :615-619
[47]   Entropy of a uniformly accelerating black hole [J].
Han H. ;
Zheng Z. ;
Li-hua Z. .
International Journal of Theoretical Physics, 2002, 41 (9) :1781-1793
[48]   On the Origin of Black-Hole Entropy [J].
V. F. Mukhanov .
Foundations of Physics, 2003, 33 :271-277
[49]   Landau degeneracy and black hole entropy [J].
Costa, MS ;
Perry, MJ .
NUCLEAR PHYSICS B, 1998, 520 (1-2) :205-228
[50]   Two dimensional black hole entropy [J].
J. Sadeghi ;
M.R. Setare ;
B. Pourhassan .
The European Physical Journal C, 2008, 53 :95-97