Entropy of an extremal regular black hole

被引:19
作者
Myung, Yun Soo [1 ,2 ]
Kim, Yong-Wan [1 ,2 ]
Park, Young-Jai [3 ,4 ]
机构
[1] Inje Univ, Inst Math Sci, Gimhae 621749, South Korea
[2] Inje Univ, Sch Comp Aided Sci, Gimhae 621749, South Korea
[3] Sogang Univ, Dept Phys, Seoul 121742, South Korea
[4] Sogang Univ, Ctr Quantum Spacetime, Seoul 121742, South Korea
基金
新加坡国家研究基金会;
关键词
regular black hole; nonlinear electrodynamics; entropy;
D O I
10.1016/j.physletb.2007.12.007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a magnetically charged extremal regular black hole in the coupled system of Einstein gravity and nonlinear electrodynamics. Its near horizon geometry is given by AdS(2) x S-2. It turns out that the entropy function approach does not automatically lead to a correct entropy of the Bekenstein-Hawking entropy. This contrasts to the case of the extremal Reissner-Norstrom black hole in the Einstein-Maxwell theory. We conclude that the entropy function approach does not work for a magnetically charged extremal regular black hole without singularity, because of the nonlinearity of the entropy function. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:832 / 838
页数:7
相关论文
共 50 条
[31]   Entropy Quantization of Schwarzschild Black Hole [J].
M.Atiqur Rahman .
CommunicationsinTheoreticalPhysics, 2019, 71 (03) :307-311
[32]   Entropy of a uniformly accelerating black hole [J].
He, H ;
Zhao, Z ;
Zhang, LH .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (09) :1781-1793
[33]   Black Hole Entropy: Membrane Approach [J].
Li Xiang ;
Zhao Zheng .
International Journal of Theoretical Physics, 2001, 40 :903-911
[34]   Entropy in the interior of a Kerr black hole [J].
Wang, Xin-Yang ;
Jiang, We ;
Liu, Wen-Biao .
CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (21)
[35]   On the origin of black-hole entropy [J].
Mukhanov, VF .
FOUNDATIONS OF PHYSICS, 2003, 33 (02) :271-277
[36]   Embolic aspects of black hole entropy [J].
Kalogeropoulos, Nikolaos .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (10)
[37]   Systolic Aspects of Black Hole Entropy [J].
Kalogeropoulos, Nikolaos .
AXIOMS, 2020, 9 (01)
[38]   Edge states and black hole entropy [J].
Corichi, A .
GENERAL RELATIVITY AND GRAVITATION, 1999, 31 (05) :615-619
[39]   A Schrodinger black hole and its entropy [J].
Sudarsky, D .
MODERN PHYSICS LETTERS A, 2002, 17 (15-17) :1047-1057
[40]   Topology in Entropy of Schwarzschild Black Hole [J].
Guo-Hong Yang .
International Journal of Theoretical Physics, 2002, 41 :953-959