Classification of High Resolution Remote Sensing Images using Deep Learning Techniques

被引:0
作者
Alias, Bini [1 ]
Karthika, R. [1 ]
Parameswaran, Latha [2 ]
机构
[1] Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, India
[2] Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Dept Comp Sci & Engn, Coimbatore, Tamil Nadu, India
来源
2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI) | 2018年
关键词
Transfer Learning; CNN; Classification; SCENE CLASSIFICATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
High Resolution Satellite Images are widely used in many applications. Since such images are useful to provide more useful information about the details about the every regions around the world. In this work, transfer learning is used efficiently for the feature extraction from a pretrained Convolutional Neural Network(CNN) model which is used for training in the classification task. Using transfer learning the classification yielded a better accurate results. The experiments are carried out on two high resolution remote sensing satellite images such as UC Merced LandUse and SceneSat Datasets. The pre-trained CNN used here is VGG-16 which is trained on millions of Image-Net Dataset. The proposed method yielded a classification accuracy of 93% in UC Merced LandUse Dataset and in SceneSat Dataset it is about 84%. This proposed method yielded a better precision of 0.93 and 0.86 in UC Merced LandUse Dataset and in SceneSat Dataset respectively.
引用
收藏
页码:1196 / 1202
页数:7
相关论文
共 50 条
  • [21] Transfer Learning Based Convolutional Neural Network for Classification of Remote Sensing Images
    Ramasamy, Meena Prakash
    Krishnasamy, Valarmathi
    Ramapackiam, Shantha Selva Kumari
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2023, 23 (04) : 31 - 40
  • [22] Scene classification of high-resolution remote sensing images based on IMFNet
    Zhang, Xin
    Wang, Yongcheng
    Zhang, Ning
    Xu, Dongdong
    Chen, Bo
    Ben, Guangli
    Wang, Xue
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [23] Review of Deep Learning Techniques for Gender Classification in Images
    Dwivedi, Neelam
    Singh, Dushyant Kumar
    HARMONY SEARCH AND NATURE INSPIRED OPTIMIZATION ALGORITHMS, 2019, 741 : 1089 - 1099
  • [24] Mining Deep Semantic Representations for Scene Classification of High-Resolution Remote Sensing Imagery
    Hu, Fan
    Xia, Gui-Song
    Yang, Wen
    Zhang, Liangpei
    IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (03) : 522 - 536
  • [25] Land-Cover Classification With High-Resolution Remote Sensing Images Using Interactive Segmentation
    Xu, Leilei
    Liu, Yujun
    Shi, Shanqiu
    Zhang, Hao
    Wang, Dan
    IEEE ACCESS, 2023, 11 : 6735 - 6747
  • [26] Self-Supervised Edge Perceptual Learning Framework for High-Resolution Remote Sensing Images Classification
    Li, Guangfei
    Liu, Wenbing
    Gao, Quanxue
    Wang, Qianqian
    Han, Jungong
    Gao, Xinbo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 6024 - 6038
  • [27] Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images
    Li, Weijia
    Fu, Haohuan
    Yu, Le
    Cracknell, Arthur
    REMOTE SENSING, 2017, 9 (01)
  • [28] Unsupervised Deep Feature Learning for Urban Village Detection from High-Resolution Remote Sensing Images
    Li, Yansheng
    Huang, Xin
    Liu, Hui
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2017, 83 (08) : 567 - 579
  • [29] High-level Semantic Information Extraction of Remote Sensing Images Based on Deep Learning Image Classification
    Cheng, Mengzhe
    Yang, Junli
    Wang, Zhenyu
    Yu, Mengxi
    Dong, Wenbo
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY V, 2018, 10817
  • [30] Deep Learning-Based Object Detection Techniques for Remote Sensing Images: A Survey
    Li, Zheng
    Wang, Yongcheng
    Zhang, Ning
    Zhang, Yuxi
    Zhao, Zhikang
    Xu, Dongdong
    Ben, Guangli
    Gao, Yunxiao
    REMOTE SENSING, 2022, 14 (10)