Switching nonparametric regression models for multi-curve data

被引:5
|
作者
De Souza, Camila P. E. [1 ,2 ]
Heckman, Nancy E. [3 ]
Xu, Fan [4 ]
机构
[1] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC, Canada
[2] BC Canc Agcy, Dept Mol Oncol, Vancouver, BC, Canada
[3] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
[4] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2017年 / 45卷 / 04期
关键词
EM algorithm; functional data analysis; latent variables; machine learning; nonparametric regression; power usage; switching nonparametric regression model; MSC 2010: Primary 62G08; secondary; 62G05; MAXIMUM-LIKELIHOOD; MIXTURES;
D O I
10.1002/cjs.11331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop and apply an approach for analyzing multi-curve data where each curve is driven by a latent state process. The state at any particular point determines a smooth function, forcing the individual curve to switch from one function to another. Thus each curve follows what we call a switching nonparametric regression model. We develop an EM algorithm to estimate the model parameters. We also obtain standard errors for the parameter estimates of the state process. We consider three types of hidden states: those that are independent and identically distributed, those that follow a Markov structure, and those that are independent but with distribution depending on some covariate(s). A simulation study shows the frequentist properties of our estimates. We apply our methods to a building's power usage data. The Canadian Journal of Statistics 45: 442-460; 2017 (c) 2017 Statistical Society of Canada
引用
收藏
页码:442 / 460
页数:19
相关论文
共 50 条
  • [1] Switching nonparametric regression models
    de Souza, Camila P. E.
    Heckman, Nancy E.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (04) : 617 - 637
  • [2] Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination
    Ferraty, F
    Vieu, P
    JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) : 111 - 125
  • [3] Nonparametric Mixture of Regression Models
    Huang, Mian
    Li, Runze
    Wang, Shaoli
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 929 - 941
  • [4] A review of nonparametric regression methods for longitudinal data
    Yang, Changxin
    Zhu, Zhongyi
    STATISTICS AND ITS INTERFACE, 2024, 17 (01) : 127 - 142
  • [5] Estimation in nonparametric location-scale regression models with censored data
    Heuchenne, Cedric
    Van Keilegom, Ingrid
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (03) : 439 - 463
  • [6] Robust Nonparametric Regression via Sparsity Control With Application to Load Curve Data Cleansing
    Mateos, Gonzalo
    Giannakis, Georgios B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (04) : 1571 - 1584
  • [7] Estimation in nonparametric location-scale regression models with censored data
    Cédric Heuchenne
    Ingrid Van Keilegom
    Annals of the Institute of Statistical Mathematics, 2010, 62 : 439 - 463
  • [8] ON CONCURVITY IN NONLINEAR AND NONPARAMETRIC REGRESSION MODELS
    Amodio, Sonia
    Aria, Massimo
    D'Ambrosio, Antonio
    STATISTICA, 2014, 74 (01) : 85 - 98
  • [9] Nonparametric tests for semiparametric regression models
    Federico Ferraccioli
    Laura M. Sangalli
    Livio Finos
    TEST, 2023, 32 : 1106 - 1130
  • [10] Testing symmetry in nonparametric regression models
    Dette, H
    Kusi-Appiah, S
    Neumeyer, N
    JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (05) : 477 - 494