Sheaves of structures, Heyting-valued structures, and a generalization of Los's theorem

被引:3
作者
Aratake, Hisashi [1 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
关键词
D O I
10.1002/malq.202000088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sheaves of structures are useful to give constructions in universal algebra and model theory. We can describe their logical behavior in terms of Heyting-valued structures. In this paper, we first provide a systematic treatment of sheaves of structures and Heyting-valued structures from the viewpoint of categorical logic. We then prove a form of Los's theorem for Heyting-valued structures. We also give a characterization of Heyting-valued structures for which Los's theorem holds with respect to any maximal filter.
引用
收藏
页码:445 / 468
页数:24
相关论文
共 66 条
[31]  
KAISER K, 1977, J LOND MATH SOC, V16, P385
[32]  
Keisler H. J., 1973, MAA STUD MATH, V8, P96
[33]  
Knoebel Arthur., 2012, Sheaves of Algebras over Boolean Spaces
[34]  
Kutateladze, 1999, MATH APPL, V494
[35]  
Lane S.Mac., 1992, SHEAVES GEOMETRY LOG
[36]   A NON-BOOLEAN VERSION OF FEFERMAN-VAUGHT THEOREM [J].
LAVENDHOMME, R ;
LUCAS, T .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1985, 31 (04) :299-308
[37]   MODEL COMPANION OF THEORY OF COMMUTATIVE RINGS WITHOUT NILPOTENT ELEMENTS [J].
LIPSHITZ, L ;
SARACINO, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 38 (02) :381-387
[38]   SHEAVES AND BOOLEAN VALUED MODEL THEORY [J].
LOULLIS, G .
JOURNAL OF SYMBOLIC LOGIC, 1979, 44 (02) :153-183
[40]  
Macintyre A., 1977, HDB MATH LOGIC, P139