High-fidelity laser-free universal control of trapped ion qubits

被引:122
作者
Srinivas, R. [1 ,2 ,8 ]
Burd, S. C. [1 ,2 ,9 ]
Knaack, H. M. [1 ,2 ]
Sutherland, R. T. [3 ,4 ,5 ]
Kwiatkowski, A. [1 ,2 ]
Glancy, S. [1 ]
Knill, E. [1 ,6 ]
Wineland, D. J. [1 ,2 ,7 ]
Leibfried, D. [1 ]
Wilson, A. C. [1 ]
Allcock, D. T. C. [1 ,2 ,7 ]
Slichter, D. H. [1 ]
机构
[1] NIST, Boulder, CO 80305 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[3] Lawrence Livermore Natl Lab, Phys Div, Phys & Life Sci, Livermore, CA 94550 USA
[4] Univ Texas San Antonio, Dept Elect & Comp Engn, San Antonio, TX USA
[5] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA
[6] Univ Colorado, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
[7] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
[8] Univ Oxford, Dept Phys, Clarendon Lab, Oxford, England
[9] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
关键词
QUANTUM; ENTANGLEMENT; MANIPULATION; COMPUTER; GATES;
D O I
10.1038/s41586-021-03809-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Universal control of multiple qubits-the ability to entangle qubits and to perform arbitrary individual qubit operations(1)-is a fundamental resource for quantum computing(2), simulation(3) and networking(4). Qubits realized in trapped atomic ions have shown the highest-fidelity two-qubit entangling operations(5-7) and single-qubit rotations(8) so far. Universal control of trapped ion qubits has been separately demonstrated using tightly focused laser beams(9-12) or by moving ions with respect to laser beams(13-15), but at lower fidelities. Laser-free entangling methods(16-20) may offer improved scalability by harnessing microwave technology developed for wireless communications, but so far their performance has lagged the best reported laser-based approaches. Here we demonstrate high-fidelity laser-free universal control of two trapped-ion qubits by creating both symmetric and antisymmetric maximally entangled states with fidelities of 1-0.0017+0 and 0.9977-0.0013+0.0010, respectively (68 per cent confidence level), corrected for initialization error. We use a scheme based on radiofrequency magnetic field gradients combined with microwave magnetic fields that is robust against multiple sources of decoherence and usable with essentially any trapped ion species. The scheme has the potential to perform simultaneous entangling operations on multiple pairs of ions in a large-scale trapped-ion quantum processor without increasing control signal power or complexity. Combining this technology with low-power laser light delivered via trap-integrated photonics(21,22) and trap-integrated photon detectors for qubit readout(23,24) provides an opportunity for scalable, high-fidelity, fully chip-integrated trapped-ion quantum computing.
引用
收藏
页码:209 / 213
页数:5
相关论文
共 56 条
  • [1] Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits
    Ballance, C. J.
    Harty, T. P.
    Linke, N. M.
    Sepiol, M. A.
    Lucas, D. M.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (06)
  • [2] ELEMENTARY GATES FOR QUANTUM COMPUTATION
    BARENCO, A
    BENNETT, CH
    CLEVE, R
    DIVINCENZO, DP
    MARGOLUS, N
    SHOR, P
    SLEATOR, T
    SMOLIN, JA
    WEINFURTER, H
    [J]. PHYSICAL REVIEW A, 1995, 52 (05): : 3457 - 3467
  • [3] Deterministic quantum teleportation of atomic qubits
    Barrett, MD
    Chiaverini, J
    Schaetz, T
    Britton, J
    Itano, WM
    Jost, JD
    Knill, E
    Langer, C
    Leibfried, D
    Ozeri, R
    Wineland, DJ
    [J]. NATURE, 2004, 429 (6993) : 737 - 739
  • [4] Preparation and coherent manipulation of pure quantum states of a single molecular ion
    Chou, Chin-wen
    Kurz, Christoph
    Hume, David B.
    Plessow, Philipp N.
    Leibrandt, David R.
    Leibfried, Dietrich
    [J]. NATURE, 2017, 545 (7653) : 203 - +
  • [5] QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS
    CIRAC, JI
    ZOLLER, P
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (20) : 4091 - 4094
  • [6] High-Fidelity Bell-State Preparation with 40Ca+ Optical Qubits
    Clark, Craig R.
    Tinkey, Holly N.
    Sawyer, Brian C.
    Meier, Adam M.
    Burkhardt, Karl A.
    Seck, Christopher M.
    Shappert, Christopher M.
    Guise, Nicholas D.
    Volin, Curtis E.
    Fallek, Spencer D.
    Hayden, Harley T.
    Rellergert, Wade G.
    Brown, Kenton R.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (13)
  • [7] High-fidelity spatial and polarization addressing of 43Ca+ qubits using near-field microwave control
    Craik, D. P. L. Aude
    Linke, N. M.
    Sepiol, M. A.
    Harty, T. P.
    Goodwin, J. F.
    Ballance, C. J.
    Stacey, D. N.
    Steane, A. M.
    Lucas, D. M.
    Allcock, D. T. C.
    [J]. PHYSICAL REVIEW A, 2017, 95 (02)
  • [8] Demonstration of a small programmable quantum computer with atomic qubits
    Debnath, S.
    Linke, N. M.
    Figgatt, C.
    Landsman, K. A.
    Wright, K.
    Monroe, C.
    [J]. NATURE, 2016, 536 (7614) : 63 - +
  • [9] Scalable noise estimation with random unitary operators
    Emerson, J
    Alicki, R
    Zyczkowski, K
    [J]. JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (10) : S347 - S352
  • [10] Characterizing large-scale quantum computers via cycle benchmarking
    Erhard, Alexander
    Wallman, Joel J.
    Postler, Lukas
    Meth, Michael
    Stricker, Roman
    Martinez, Esteban A.
    Schindler, Philipp
    Monz, Thomas
    Emerson, Joseph
    Blatt, Rainer
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)