DGL-LifeSci: An Open-Source Toolkit for Deep Learning on Graphs in Life Science

被引:122
作者
Li, Mufei [1 ]
Zhou, Jinjing [1 ]
Hu, Jiajing [2 ]
Fan, Wenxuan [3 ]
Zhang, Yangkang [4 ]
Gu, Yaxin [3 ]
Karypis, George [5 ,6 ]
机构
[1] AWS Shanghai AI Lab, 5F-102, Shanghai 200030, Peoples R China
[2] Kings Coll London, Maurice Wohl Clin Neurosci Inst, London SE5 9RT, England
[3] East China Univ Sci & Technol, Sch Pharm, Shanghai 200237, Peoples R China
[4] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310058, Peoples R China
[5] AWS AI, East Palo Alto, CA 94303 USA
[6] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
关键词
CHEMICAL SPACE;
D O I
10.1021/acsomega.1c04017
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graph neural networks (GNNs) constitute a class of deep learning methods for graph data. They have wide applications in chemistry and biology, such as molecular property prediction, reaction prediction, and drug-target interaction prediction. Despite the interest, GNN-based modeling is challenging as it requires graph data preprocessing and modeling in addition to programming and deep learning. Here, we present Deep Graph Library (DGL)-LifeSci, an open-source package for deep learning on graphs in life science. Deep Graph Library (DGL)-LifeSci is a python toolkit based on RDKit, PyTorch, and Deep Graph Library (DGL). DGL-LifeSci allows GNN-based modeling on custom datasets for molecular property prediction, reaction prediction, and molecule generation. With its command-line interfaces, users can perform modeling without any background in programming and deep learning. We test the command-line interfaces using standard benchmarks MoleculeNet, USPTO, and ZINC. Compared with previous implementations, DGL-LifeSci achieves a speed up by up to 6x. For modeling flexibility, DGL-LifeSci provides well-optimized modules for various stages of the modeling pipeline. In addition, DGL-LifeSci provides pretrained models for reproducing the test experiment results and applying models without training.
引用
收藏
页码:27233 / 27238
页数:6
相关论文
共 32 条
[21]   PiNN: A Python']Python Library for Building Atomic Neural Networks of Molecules and Materials [J].
Shao, Yunqi ;
Hellstrom, Matti ;
Mitev, Pavlin D. ;
Knijff, Lisanne ;
Zhang, Chao .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (03) :1184-1193
[22]   Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties [J].
Shui, Zeren ;
Karypis, George .
20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, :492-500
[23]   ZINC 15-Ligand Discovery for Everyone [J].
Sterling, Teague ;
Irwin, John J. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (11) :2324-2337
[24]   A Deep Learning Approach to Antibiotic Discovery [J].
Stokes, Jonathan M. ;
Yang, Kevin ;
Swanson, Kyle ;
Jin, Wengong ;
Cubillos-Ruiz, Andres ;
Donghia, Nina M. ;
MacNair, Craig R. ;
French, Shawn ;
Carfrae, Lindsey A. ;
Bloom-Ackerman, Zohar ;
Tran, Victoria M. ;
Chiappino-Pepe, Anush ;
Badran, Ahmed H. ;
Andrews, Ian W. ;
Chory, Emma J. ;
Church, George M. ;
Brown, Eric D. ;
Jaakkola, Tommi S. ;
Barzilay, Regina ;
Collins, James J. .
CELL, 2020, 180 (04) :688-+
[25]   Graph convolutional networks for computational drug development and discovery [J].
Sun, Mengying ;
Zhao, Sendong ;
Gilvary, Coryandar ;
Elemento, Olivier ;
Zhou, Jiayu ;
Wang, Fei .
BRIEFINGS IN BIOINFORMATICS, 2020, 21 (03) :919-935
[26]  
Velickovi Petar, 2018, INT C LEARN REPR
[27]  
Wang M., ARXIV190901315
[28]   MoleculeNet: a benchmark for molecular machine learning [J].
Wu, Zhenqin ;
Ramsundar, Bharath ;
Feinberg, Evan N. ;
Gomes, Joseph ;
Geniesse, Caleb ;
Pappu, Aneesh S. ;
Leswing, Karl ;
Pande, Vijay .
CHEMICAL SCIENCE, 2018, 9 (02) :513-530
[29]   A Comprehensive Survey on Graph Neural Networks [J].
Wu, Zonghan ;
Pan, Shirui ;
Chen, Fengwen ;
Long, Guodong ;
Zhang, Chengqi ;
Yu, Philip S. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (01) :4-24
[30]   Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism [J].
Xiong, Zhaoping ;
Wang, Dingyan ;
Liu, Xiaohong ;
Zhong, Feisheng ;
Wan, Xiaozhe ;
Li, Xutong ;
Li, Zhaojun ;
Luo, Xiaomin ;
Chen, Kaixian ;
Jiang, Hualiang ;
Zheng, Mingyue .
JOURNAL OF MEDICINAL CHEMISTRY, 2020, 63 (16) :8749-8760