DGL-LifeSci: An Open-Source Toolkit for Deep Learning on Graphs in Life Science

被引:122
作者
Li, Mufei [1 ]
Zhou, Jinjing [1 ]
Hu, Jiajing [2 ]
Fan, Wenxuan [3 ]
Zhang, Yangkang [4 ]
Gu, Yaxin [3 ]
Karypis, George [5 ,6 ]
机构
[1] AWS Shanghai AI Lab, 5F-102, Shanghai 200030, Peoples R China
[2] Kings Coll London, Maurice Wohl Clin Neurosci Inst, London SE5 9RT, England
[3] East China Univ Sci & Technol, Sch Pharm, Shanghai 200237, Peoples R China
[4] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310058, Peoples R China
[5] AWS AI, East Palo Alto, CA 94303 USA
[6] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
关键词
CHEMICAL SPACE;
D O I
10.1021/acsomega.1c04017
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graph neural networks (GNNs) constitute a class of deep learning methods for graph data. They have wide applications in chemistry and biology, such as molecular property prediction, reaction prediction, and drug-target interaction prediction. Despite the interest, GNN-based modeling is challenging as it requires graph data preprocessing and modeling in addition to programming and deep learning. Here, we present Deep Graph Library (DGL)-LifeSci, an open-source package for deep learning on graphs in life science. Deep Graph Library (DGL)-LifeSci is a python toolkit based on RDKit, PyTorch, and Deep Graph Library (DGL). DGL-LifeSci allows GNN-based modeling on custom datasets for molecular property prediction, reaction prediction, and molecule generation. With its command-line interfaces, users can perform modeling without any background in programming and deep learning. We test the command-line interfaces using standard benchmarks MoleculeNet, USPTO, and ZINC. Compared with previous implementations, DGL-LifeSci achieves a speed up by up to 6x. For modeling flexibility, DGL-LifeSci provides well-optimized modules for various stages of the modeling pipeline. In addition, DGL-LifeSci provides pretrained models for reproducing the test experiment results and applying models without training.
引用
收藏
页码:27233 / 27238
页数:6
相关论文
共 32 条
[1]  
[Anonymous], 2014, PATENT REACTION EXTR
[2]  
[Anonymous], 2015, P WORKSH MACH LEARN
[3]   The properties of known drugs .1. Molecular frameworks [J].
Bemis, GW ;
Murcko, MA .
JOURNAL OF MEDICINAL CHEMISTRY, 1996, 39 (15) :2887-2893
[4]  
Bergstra J, 2012, P 30 INT C MACH LEAR, P115
[5]  
Cho Kyunghyun, 2014, P 2014 C EMP METH NA, P1724
[6]   A graph-convolutional neural network model for the prediction of chemical reactivity [J].
Coley, Connor W. ;
Jin, Wengong ;
Rogers, Luke ;
Jamison, Timothy F. ;
Jaakkola, Tommi S. ;
Green, William H. ;
Barzilay, Regina ;
Jensen, Klavs F. .
CHEMICAL SCIENCE, 2019, 10 (02) :370-377
[7]   Chemical space and biology [J].
Dobson, CM .
NATURE, 2004, 432 (7019) :824-828
[8]   PotentialNet for Molecular Property Prediction [J].
Feinberg, Evan N. ;
Sur, Debnil ;
Wu, Zhenqin ;
Husic, Brooke E. ;
Mai, Huanghao ;
Li, Yang ;
Sun, Saisai ;
Yang, Jianyi ;
Ramsundar, Bharath ;
Pande, Vijay S. .
ACS CENTRAL SCIENCE, 2018, 4 (11) :1520-1530
[9]  
Gilmer J, 2017, PR MACH LEARN RES, V70
[10]   Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules [J].
Gomez-Bombarelli, Rafael ;
Wei, Jennifer N. ;
Duvenaud, David ;
Hernandez-Lobato, Jose Miguel ;
Sanchez-Lengeling, Benjamin ;
Sheberla, Dennis ;
Aguilera-Iparraguirre, Jorge ;
Hirzel, Timothy D. ;
Adams, Ryan P. ;
Aspuru-Guzik, Alan .
ACS CENTRAL SCIENCE, 2018, 4 (02) :268-276