PERIODIC ORBITS FOR THE PERTURBED PLANAR CIRCULAR RESTRICTED 3-BODY PROBLEM

被引:42
作者
Abouelmagd, Elbaz, I [1 ,2 ]
Garcia Guirao, Juan Luis [3 ]
Libre, Jaume L. [4 ]
机构
[1] King Abdulaziz Univ, Nonlinear Anal & Appl Math Res Grp NAAM, Math Dept, Jeddah, Saudi Arabia
[2] NRIAG, Celestial Mech Unit, Astron Dept, Cairo 11421, Egypt
[3] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Hosp Marina, Cartagena 30203, Region De Murci, Spain
[4] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2019年 / 24卷 / 03期
关键词
Periodic orbits continuation; circular restricted 3-body problem; perturbed forces; zonal harmonic; solar sail; NUMERICAL-INTEGRATION; GLOBAL FLOW; STABILITY; EXISTENCE; FAMILIES; POINTS;
D O I
10.3934/dcdsb.2019003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize when the classical first and second kind of periodic orbits of the planar circular restricted 3-body problem obtained by Poincare, can be extended to perturbed planar circular restricted 3-body problems. We put special emphasis when the perturbed forces are due to zonal harmonic or to a solar sail.
引用
收藏
页码:1007 / 1020
页数:14
相关论文
共 48 条
[1]  
Abouelmagd E.I., 2016, Appl. Math. Nonlinear Sci, V1, P123, DOI [10.21042/AMNS.2016.1.00010, DOI 10.21042/AMNS.2016.1.00010]
[2]   The effect of zonal harmonic coefficients in the framework of the restricted three-body problem [J].
Abouelmagd, Elbaz I. ;
Alhothuali, M. S. ;
Guirao, Juan L. G. ;
Malaikah, H. M. .
ADVANCES IN SPACE RESEARCH, 2015, 55 (06) :1660-1672
[3]   Numerical integration of the restricted three-body problem with Lie series [J].
Abouelmagd, Elbaz I. ;
Guirao, Juan L. G. ;
Mostafa, A. .
ASTROPHYSICS AND SPACE SCIENCE, 2014, 354 (02) :369-378
[4]   Existence and stability of triangular points in the restricted three-body problem with numerical applications [J].
Abouelmagd, Elbaz I. .
ASTROPHYSICS AND SPACE SCIENCE, 2012, 342 (01) :45-53
[5]   Heteroclinic orbits and Bernoulli shift for the elliptic collision restricted three-body problem [J].
Alvarez, M ;
Llibre, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (04) :317-357
[6]  
[Anonymous], 1966, AM MATH SOC C PUBLIC
[7]  
[Anonymous], 1899, METHODES NOUVELLES M
[8]   Numerical integration of dynamical systems with Lie series Relativistic acceleration and non-gravitational forces [J].
Bancelin, D. ;
Hestroffer, D. ;
Thuillot, W. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 112 (02) :221-234
[9]   EXISTENCE OF PERIODIC ORBITS OF SECOND KIND IN RESTRICTED PROBLEM OF 3 BODIES [J].
BARRAR, RB .
ASTRONOMICAL JOURNAL, 1965, 70 (01) :3-&
[10]   ON THE FAMILIES OF PERIODIC-ORBITS WHICH BIFURCATE FROM THE CIRCULAR SITNIKOV MOTIONS [J].
BELBRUNO, E ;
LLIBRE, J ;
OLLE, M .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 60 (01) :99-129