Eigenvalue and eigenfunction error estimates for finite element formulations of linear hydroelasticity

被引:0
作者
Ryan, P [1 ]
机构
[1] Lockheed Martin Missles & Space, Sunnyvale, CA 94089 USA
关键词
hydroelasticity; finite element; eigenvalue; error estimates;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Convergence of an approximate method for determining vibrational eigenpairs of an elastic solid containing an incompressible fluid is examined. The field variables are solid displacement and fluid pressure. We show that in suitable Sobolev spaces a variational formulation exists whose solution eigenvalues and eigenfunctions are identified with those of a compact operator. A nonconforming finite element approximation of this variational problem is described and optimal a priori error estimates are obtained for both the eigenvalues and eigenfunctions.
引用
收藏
页码:471 / 487
页数:17
相关论文
共 50 条
[21]   FINITE ELEMENT ERROR ESTIMATES ON THE BOUNDARY WITH APPLICATION TO OPTIMAL CONTROL [J].
Apel, Thomas ;
Pfefferer, Johannes ;
Roesch, Arnd .
MATHEMATICS OF COMPUTATION, 2015, 84 (291) :33-70
[22]   Error Estimates of the Finite Element Method for Interior Transmission Problems [J].
Wu, Xinming ;
Chen, Wenbin .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 57 (02) :331-348
[23]   Error Estimates of the Finite Element Method for Interior Transmission Problems [J].
Xinming Wu ;
Wenbin Chen .
Journal of Scientific Computing, 2013, 57 :331-348
[24]   Error Estimates for Finite Element Approximations of a Viscous Wave Equation [J].
Karaa, Samir .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) :750-767
[25]   ERROR ESTIMATES OF FINITE ELEMENT METHODS FOR STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Li, Xiaocui ;
Yang, Xiaoyuan .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2017, 35 (03) :346-362
[26]   A PRIORI ERROR ESTIMATES OF A FINITE ELEMENT METHOD FOR DISTRIBUTED FLUX RECONSTRUCTION [J].
Li, Mingxia ;
Li, Jingzhi ;
Mao, Shipeng .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2013, 31 (04) :382-397
[27]   EIGENVALUE ESTIMATES ON A CONNECTED FINITE GRAPH [J].
Wang, Lin Feng ;
Zhou, Yu Jie .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (11) :4855-4866
[28]   A posteriori error estimates with the finite element method of lines for a Sobolev equation [J].
Tran, T ;
Duong, TB .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (03) :521-535
[29]   A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT DISCRETIZATIONS OF A SHAPE OPTIMIZATION PROBLEM [J].
Kiniger, Bernhard ;
Vexler, Boris .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06) :1733-1763
[30]   LP error estimates and superconvergence for covolume or finite volume element methods [J].
Chou, SH ;
Kwak, DY ;
Li, O .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (04) :463-486