A uric acid sensor based on electrodeposition of nickel hexacyanoferrate nanoparticles on an electrode modified with multi-walled carbon nanotubes

被引:39
作者
Fang, Bin [1 ]
Feng, Yuehua [1 ]
Wang, Guangfeng [1 ]
Zhang, Cuihong [1 ]
Gu, Aixia [1 ]
Liu, Min [1 ]
机构
[1] Anhui Normal Univ, Coll Chem & Mat Sci, Anhui Key Lab Chemobiosensing, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Nickel hexacyanoferrate; Multi-walled carbon nanotubes; Uric acid; Cyclic voltammetry; Modified electrode; HIGHLY SELECTIVE DETERMINATION; PRUSSIAN BLUE; ASCORBIC-ACID; ELECTROCHEMICAL PREPARATION; CERAMIC ELECTRODE; OXIDATION; DOPAMINE; BEHAVIOR; FILMS;
D O I
10.1007/s00604-010-0509-8
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
An electrode sensitive to uric acid was prepared by electrodeposition of nickel(II) hexacyanoferrate(III) on the surface of a glassy carbon electrode modified with multi-walled carbon nanotubes. The morphology of the material was characterized by scanning electron microscopy and Fourier transform infrared spectrometry. The modified electrode were characterized via cyclic voltammetry and amperometry (i - t). It exhibited efficient electron transfer ability and a strong and fast (< 3 s) response towards uric acid which is linear in the range from 0.1 mu M to 18 mu M, with a lower detection limit of 50 nM (at an S/N ratio of 3). In addition, the electrode exhibited good reproducibility and long-term stability.
引用
收藏
页码:27 / 32
页数:6
相关论文
共 34 条
  • [1] [Anonymous], 2006, J MAT SCI MAT ELECT
  • [2] Hydrazine oxidation catalyzed by ruthenium hexacyanoferrate-modified glassy carbon electrode
    Costa, Wendell M.
    Marques, Aldalea L. B.
    Marques, Edmar P.
    Bezerra, Cicero W. B.
    Sousa, Eliane R.
    Cardoso, William S.
    Song, Chaojie
    Zhang, Jiujun
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2010, 40 (02) : 375 - 382
  • [3] Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes
    Dai, Xuan
    Wildgoose, Gregory G.
    Salter, Chris
    Crossley, Alison
    Compton, Richard G.
    [J]. ANALYTICAL CHEMISTRY, 2006, 78 (17) : 6102 - 6108
  • [4] Highly selective determination of ascorbic acid, dopamine, and uric acid by differential pulse voltammetry using poly(sulfonazo III) modified glassy carbon electrode
    Ensafi, Ali A.
    Taei, M.
    Khayamian, T.
    Arabzadeh, A.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2010, 147 (01): : 213 - 221
  • [5] Electrochemical characterisation of uric acid and ascorbic acid at a platinum electrode
    Ernst, H
    Knoll, M
    [J]. ANALYTICA CHIMICA ACTA, 2001, 449 (1-2) : 129 - 134
  • [6] Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase
    Galbán, J
    Andreu, Y
    Almenara, MJ
    de Marcos, S
    Castillo, JR
    [J]. TALANTA, 2001, 54 (05) : 847 - 854
  • [7] GARCIA MBQ, 2004, PORT ELECTROCHIM ACT, V22, P249
  • [8] CLAY-MODIFIED ELECTRODES
    GHOSH, PK
    BARD, AJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1983, 105 (17) : 5691 - 5693
  • [9] Hydrogen storage in carbon nanotubes and related materials
    Gundiah, G
    Govindaraj, A
    Rajalakshmi, N
    Dhathathreyan, KS
    Rao, CNR
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (02) : 209 - 213
  • [10] Improved sensitivity and selectivity of uric acid voltammetric sensing with mechanically grinded carbon/graphite electrodes
    Hason, Stanislav
    Vetterl, Vladimir
    Jelen, Frantisek
    Fojta, Miroslav
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (06) : 1864 - 1873