A Novel Photosynthetic Strategy for Adaptation to Low-Iron Aquatic Environments

被引:39
作者
Chauhan, Devendra [6 ]
Folea, I. Mihaela [1 ]
Jolley, Craig C. [6 ]
Kouril, Roman [1 ]
Lubner, Carolyn E. [3 ]
Lin, Su [6 ]
Kolber, Dorota [4 ]
Wolfe-Simon, Felisa [5 ,6 ]
Golbeck, John H. [2 ,3 ]
Boekema, Egbert J. [1 ]
Fromme, Petra [6 ]
机构
[1] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Groningen, Netherlands
[2] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[4] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA
[5] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[6] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
CYANOBACTERIAL PHOTOSYSTEM-I; CHLOROPHYLL-BINDING PROTEIN; ENERGY-TRANSFER; SYNECHOCOCCUS-ELONGATUS; ANTENNA RING; ISIAB OPERON; IMAGE DATA; STRESS; FLUORESCENCE; DEFICIENCY;
D O I
10.1021/bi1009425
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Iron (Fe) availability is a major limiting factor for primary production in aquatic environments. Cyanobacteria respond to Fe deficiency by derepressing the isiAB operon, which encodes the antenna protein IsiA and flavodoxin. At nanomolar Fe concentrations, a PSI-IsiA supercomplex forms, comprising a PSI trimer encircled by two complete IsiA rings. This PSI-IsiA supercomplex is the largest photosynthetic membrane protein complex yet isolated. This study presents a detailed characterization of this complex using transmission electron microscopy and ultrafast fluorescence spectroscopy. Excitation trapping and electron transfer are highly efficient, allowing cyanobacteria to avoid oxidative stress. This mechanism may be a major factor used by cyanobacteria to successfully adapt to modern low-Fe environments.
引用
收藏
页码:686 / 692
页数:7
相关论文
共 60 条
[21]   Structure of photosystem I [J].
Fromme, P ;
Jordan, P ;
Krauss, N .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2001, 1507 (1-3) :5-31
[22]   Seasonal distributions of aeolian iron fluxes to the global ocean [J].
Gao, Y ;
Kaufman, YJ ;
Tanré, D ;
Kolber, D ;
Falkowski, PG .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (01) :29-32
[23]   Energy transfer and trapping in photosystem I [J].
Gobets, B ;
van Grondelle, R .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2001, 1507 (1-3) :80-99
[24]   Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria:: A unified compartmental model [J].
Gobets, B ;
van Stokkum, IHM ;
Rögner, M ;
Kruip, J ;
Schlodder, E ;
Karapetyan, NV ;
Dekker, JP ;
van Grondelle, R .
BIOPHYSICAL JOURNAL, 2001, 81 (01) :407-424
[25]   ORGANIZATION AND FUNCTION OF CHLOROPHYLL IN MEMBRANES OF CYANOBACTERIA DURING IRON STARVATION [J].
GUIKEMA, JA ;
SHERMAN, LA .
PLANT PHYSIOLOGY, 1983, 73 (02) :250-256
[26]   UNIVERSALITY OF ENERGY AND ELECTRON-TRANSFER PROCESSES IN PHOTOSYSTEM-I [J].
HASTINGS, G ;
HOSHINA, S ;
WEBBER, AN ;
BLANKENSHIP, RE .
BIOCHEMISTRY, 1995, 34 (47) :15512-15522
[27]   The chlorophyll-binding protein IsiA is inducible by high light and protects the cyanobacterium Synechocystis PCC6803 from photooxidative stress [J].
Havaux, M ;
Guedeney, G ;
Hagemann, M ;
Yeremenko, N ;
Matthijs, HCP ;
Jeanjean, R .
FEBS LETTERS, 2005, 579 (11) :2289-2293
[28]   The oxygenation of the atmosphere and oceans [J].
Holland, Heinrich D. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2006, 361 (1470) :903-915
[29]   ENERGY-TRANSFER AND CHARGE SEPARATION KINETICS IN PHOTOSYSTEM-I .1. PICOSECOND TRANSIENT ABSORPTION AND FLUORESCENCE STUDY OF CYANOBACTERIAL PHOTOSYSTEM-I PARTICLES [J].
HOLZWARTH, AR ;
SCHATZ, G ;
BROCK, H ;
BITTERSMANN, E .
BIOPHYSICAL JOURNAL, 1993, 64 (06) :1813-1826
[30]   Iron stress restricts photosynthetic intersystem electron transport in Synechococcus sp, PCC 7942 [J].
Ivanov, AG ;
Park, YI ;
Miskiewicz, E ;
Raven, JA ;
Huner, NPA ;
Öquist, G .
FEBS LETTERS, 2000, 485 (2-3) :173-177