A Novel Photosynthetic Strategy for Adaptation to Low-Iron Aquatic Environments

被引:39
作者
Chauhan, Devendra [6 ]
Folea, I. Mihaela [1 ]
Jolley, Craig C. [6 ]
Kouril, Roman [1 ]
Lubner, Carolyn E. [3 ]
Lin, Su [6 ]
Kolber, Dorota [4 ]
Wolfe-Simon, Felisa [5 ,6 ]
Golbeck, John H. [2 ,3 ]
Boekema, Egbert J. [1 ]
Fromme, Petra [6 ]
机构
[1] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Groningen, Netherlands
[2] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[4] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA
[5] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[6] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
CYANOBACTERIAL PHOTOSYSTEM-I; CHLOROPHYLL-BINDING PROTEIN; ENERGY-TRANSFER; SYNECHOCOCCUS-ELONGATUS; ANTENNA RING; ISIAB OPERON; IMAGE DATA; STRESS; FLUORESCENCE; DEFICIENCY;
D O I
10.1021/bi1009425
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Iron (Fe) availability is a major limiting factor for primary production in aquatic environments. Cyanobacteria respond to Fe deficiency by derepressing the isiAB operon, which encodes the antenna protein IsiA and flavodoxin. At nanomolar Fe concentrations, a PSI-IsiA supercomplex forms, comprising a PSI trimer encircled by two complete IsiA rings. This PSI-IsiA supercomplex is the largest photosynthetic membrane protein complex yet isolated. This study presents a detailed characterization of this complex using transmission electron microscopy and ultrafast fluorescence spectroscopy. Excitation trapping and electron transfer are highly efficient, allowing cyanobacteria to avoid oxidative stress. This mechanism may be a major factor used by cyanobacteria to successfully adapt to modern low-Fe environments.
引用
收藏
页码:686 / 692
页数:7
相关论文
共 60 条
[1]   Proterozoic ocean chemistry and evolution: A bioinorganic bridge? [J].
Anbar, AD ;
Knoll, AH .
SCIENCE, 2002, 297 (5584) :1137-1142
[2]   Energy transfer and trapping in the Photosystem I complex of Synechococcus PCC 7942 and in its supercomplex with IsiA [J].
Andrizhiyevskaya, EG ;
Frolov, D ;
van Grondelle, R ;
Dekker, JP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2004, 1656 (2-3) :104-113
[3]  
Ardelean I, 2002, FEMS MICROBIOL LETT, V213, P113, DOI 10.1016/S0378-1097(02)00801-7
[4]  
Barber James, 2006, V24, P99
[5]   Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium [J].
Berman-Frank, I ;
Cullen, JT ;
Shaked, Y ;
Sherrell, RM ;
Falkowski, PG .
LIMNOLOGY AND OCEANOGRAPHY, 2001, 46 (06) :1249-1260
[6]   Biogeography of Photosynthetic Light-Harvesting Genes in Marine Phytoplankton [J].
Bibby, Thomas S. ;
Zhang, Yinan ;
Chen, Min .
PLOS ONE, 2009, 4 (02)
[7]   Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem [J].
Bibby, TS ;
Mary, I ;
Nield, J ;
Partensky, F ;
Barber, J .
NATURE, 2003, 424 (6952) :1051-1054
[8]   Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria [J].
Bibby, TS ;
Nield, J ;
Barber, J .
NATURE, 2001, 412 (6848) :743-745
[9]   A giant chlorophyll-protein complex induced by iron defciency in cyanobacteria [J].
Boekema, EJ ;
Hifney, A ;
Yakushevska, AE ;
Piotrowski, M ;
Keegstra, W ;
Berry, S ;
Michel, KP ;
Pistorius, EK ;
Kruip, J .
NATURE, 2001, 412 (6848) :745-748
[10]   CLASSIFICATION OF IMAGE DATA IN CONJUGATE REPRESENTATION SPACES [J].
BORLAND, L ;
VANHEEL, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1990, 7 (04) :601-610