The effect of amyotrophic lateral sclerosis-linked exogenous SOD1-G93A on electrophysiological properties and intracellular calcium in cultured rat astrocytes

被引:7
|
作者
Milosevic, Milena [1 ]
Bataveljic, Danijela [1 ]
Nikolic, Ljiljana [2 ]
Bijelic, Dunja [1 ]
Andjus, Pavle [1 ]
机构
[1] Univ Belgrade, Fac Biol, Ctr Laser Microscopy, Studentski Trg 3, Belgrade 11000, Serbia
[2] Univ Belgrade, Inst Biol Res Sinisa Stankovic, Dept Neurophysiol, Belgrade, Serbia
关键词
ALS; exogenous superoxide dismutase; cultured astrocytes; membrane resistance; transmembrane currents; Ca2+ imaging; CUZN-SUPEROXIDE-DISMUTASE; MOTOR-NEURON DEGENERATION; N-BE CELLS; MUTANT SOD1; WILD-TYPE; SECRETION; ALS; PATHWAY; MICE; PROGRESSION;
D O I
10.3109/21678421.2016.1143516
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Over 150 mutations in the SOD1 gene that encodes Cu/Zn superoxide dismutase (SOD1) cause 20-25% of familial ALS, albeit without a known gain-of-function mechanism. ALS is also non-cell-autonomous, the interactions between motor neurons and their glial neighbours being implicated in disease progression. The aim here was to investigate the biophysical effects of the exogenous human mutant SOD1-G93A on rat astrocytes in culture. Primary cortical astrocyte cultures were treated with recombinant human apo- mSOD1-G93A vs. wild-type control (wtSOD1) and recorded by patch-clamp and calcium imaging. Results showed that exogenous mSOD1 as well as wtSOD1 induced a decrease of membrane resistance, the effect being persistent (up to 13min) only for the mutant form. Similarly, whole-cell inward currents in astrocytes were augmented by both wt and mSOD1, but the effect was twice larger and only progressed continuously for the latter. Both forms of SOD1 also induced a rise in intracellular Ca2+ activity, the effect being dependent on external Ca2+ and again only persisted with mSOD1, becoming significantly different from wtSOD1 only at longer times (14min). In conclusion, this study points to membrane permeability and Ca2+ signalling as processes affected by SOD1-G93A that presents the humoral factor triggering the role of astrocytes in ALS pathophysiology.
引用
收藏
页码:443 / 451
页数:9
相关论文
共 50 条
  • [1] Neuroprotective effects of diallyl trisulfide in SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis
    Guo, Yansu
    Zhang, Kunxi
    Wang, Qian
    Li, Zhongyao
    Yin, Yunxia
    Xu, Qingmei
    Duan, Weisong
    Li, Chunyan
    BRAIN RESEARCH, 2011, 1374 : 110 - 115
  • [2] Repurposing carbamazepine for the treatment of amyotrophic lateral sclerosis in SOD1-G93A mouse model
    Zhang, Jing-Jing
    Zhou, Qin-Ming
    Chen, Sheng
    Le, Wei-Dong
    CNS NEUROSCIENCE & THERAPEUTICS, 2018, 24 (12) : 1163 - 1174
  • [3] Effect of genetic background on onset and disease progression in the SOD1-G93A model of amyotrophic lateral sclerosis
    Mancuso, Renzo
    Olivan, Sara
    Mancera, Pilar
    Pasten-Zamorano, Andrea
    Manzano, Raquel
    Casas, Caty
    Osta, Rosario
    Navarro, Xavier
    AMYOTROPHIC LATERAL SCLEROSIS, 2012, 13 (03): : 302 - 310
  • [4] Sensory involvement in the SOD1-G93A mouse model of amyotrophic lateral sclerosis
    Guo, Yan-Su
    Wu, Dong-Xia
    Wu, Hong-Ran
    Wu, Shu-Yu
    Yang, Cheng
    Li, Bin
    Bu, Hui
    Zhang, Yue-sheng
    Li, Chun-Yan
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2009, 41 (03) : 140 - 150
  • [5] Compensatory changes in degenerating spinal motoneurons sustain functional sparing in the SOD1-G93A mouse model of amyotrophic lateral sclerosis
    Giusto, Elena
    Codrich, Marta
    de Leo, Gioacchino
    Francardo, Veronica
    Coradazzi, Marino
    Parenti, Rosalba
    Gulisano, Massimo
    Vicario, Nunzio
    Gulino, Rosario
    Leanza, Giampiero
    JOURNAL OF COMPARATIVE NEUROLOGY, 2020, 528 (02) : 231 - 243
  • [6] Familial amyotrophic lateral sclerosis-linked mutant SOD1 aberrantly interacts with tubulin
    Kabuta, Tomohiro
    Kinugawa, Aiko
    Tsuchiya, Yukihiro
    Kabuta, Chihana
    Setsuie, Rieko
    Tateno, Minako
    Araki, Toshiyuki
    Wada, Keiji
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 387 (01) : 121 - 126
  • [7] Neuroprotective effects of JGK-263 in transgenic SOD1-G93A mice of amyotrophic lateral sclerosis
    Ahn, Suk-Won
    Jeon, Gye Sun
    Kim, Myung-Jin
    Shon, Jee-Heun
    Kim, Jee-Eun
    Shin, Je-Young
    Kim, Sung-Min
    Kim, Seung Hyun
    Ye, In-Hae
    Lee, Kwang-Woo
    Hong, Yoon-Ho
    Sung, Jung-Joon
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2014, 340 (1-2) : 112 - 116
  • [8] Effects of Tongue Force Training on Bulbar Motor Function in the Female SOD1-G93A Rat Model of Amyotrophic Lateral Sclerosis
    Ma, Delin
    Shuler, Jeffrey M.
    Kumar, Aishwarya
    Stanford, Quincy R.
    Tungtur, Sudheer
    Nishimune, Hiroshi
    Stanford, John A.
    NEUROREHABILITATION AND NEURAL REPAIR, 2017, 31 (02) : 147 - 156
  • [9] Neuroprotective Effects of Genistein in a SOD1-G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis
    Zhao, Zichun
    Fu, Jinsheng
    Li, Shiping
    Li, Zhenzhong
    JOURNAL OF NEUROIMMUNE PHARMACOLOGY, 2019, 14 (04) : 688 - 696
  • [10] Blood pressure measurements in a transgenic SOD1-G93A mouse model of amyotrophic lateral sclerosis
    Kandinov, Boris
    Drory, Vivian E.
    Tordjman, Karen
    Korczyn, Amos D.
    AMYOTROPHIC LATERAL SCLEROSIS, 2012, 13 (06): : 509 - 513