TOPOLOGICAL CONJUGACY OF TOPOLOGICAL MARKOV SHIFTS AND CUNTZ-KRIEGER ALGEBRAS

被引:0
|
作者
Matsumoto, Kengo [1 ]
机构
[1] Joetsu Univ Educ, Dept Math, Joetsu 9438512, Japan
来源
DOCUMENTA MATHEMATICA | 2017年 / 22卷
关键词
Topological Markov shifts; topological conjugacy; strong shift equivalence; Cuntz-Krieger algebras; K-theory; gauge action; CONTINUOUS ORBIT EQUIVALENCE; MORITA EQUIVALENCE; STABLE ISOMORPHISM; FLOW EQUIVALENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an irreducible non-permutation matrix A, the triplet (O-A, D-A, rho(A)) for the Cuntz-Krieger algebra O-A, its canonical maximal abelian C*-subalgebra D-A, and its gauge action rho(A) is called the Cuntz-Krieger triplet. We introduce a notion of strong Morita equivalence in the Cuntz-Krieger triplets, and prove that two Cuntz-Krieger triplets (O-A, D-A, rho(A)) and (O-B, D-B, rho(B)) are strong Morita equivalent if and only if A and B are strong shift equivalent. We also show that the generalized gauge actions on the stabilized Cuntz-Krieger algebras are cocycle conjugate if the underlying matrices are strong shift equivalent. By clarifying K-theoretic behavior of the cocycle conjugacy, we investigate a relationship between cocycle conjugacy of the gauge actions on the stabilized Cuntz-Krieger algebras and topological conjugacy of the underlying topological Markov shifts.
引用
收藏
页码:873 / 915
页数:43
相关论文
共 50 条
  • [11] On a family of C*-subalgebras of Cuntz-Krieger algebras
    Matsumoto, Kengo
    ACTA SCIENTIARUM MATHEMATICARUM, 2022, 88 (3-4): : 739 - 767
  • [12] ALGEBRAIC CUNTZ-KRIEGER ALGEBRAS
    Nasr-Isfahani, Alireza
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 109 (01) : 93 - 111
  • [13] Minimal Cuntz-Krieger dilations and representations of Cuntz-Krieger algebras
    Bhat, B. V. Rajarama
    Dey, Santanu
    Zacharias, Joachim
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (02): : 193 - 220
  • [14] Automorphisms of Cuntz-Krieger algebras
    Eilers, Soren
    Restorff, Gunnar
    Ruiz, Efren
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2018, 12 (01) : 217 - 254
  • [15] Minimal Cuntz-Krieger dilations and representations of Cuntz-Krieger algebras
    B. V. Rajarama Bhat
    Santanu Dey
    Joachim Zacharias
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 193 - 220
  • [16] State splitting, strong shift equivalence and stable isomorphism of Cuntz-Krieger algebras
    Matsumoto, Kengo
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2019, 34 (01): : 93 - 112
  • [17] Weighted Cuntz-Krieger Algebras
    Helmer, Leonid
    Solel, Baruch
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (04)
  • [18] CORNERS OF CUNTZ-KRIEGER ALGEBRAS
    Arklint, Sara E.
    Ruiz, Efren
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (11) : 7595 - 7612
  • [19] Extensions of Cuntz-Krieger algebras
    Bentmann, Rasmus
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 471 (1-2) : 647 - 652
  • [20] SHIFT EQUIVALENCES THROUGH THE LENS OF CUNTZ-KRIEGER ALGEBRAS
    Arlsen, Toke Meierc
    Dor-on, Adam
    Eilers, Soren
    ANALYSIS & PDE, 2024, 17 (01): : 345 - 377