Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers

被引:19
作者
He, Jingni [1 ,2 ]
Wen, Wanqing [3 ]
Beeghly, Alicia [3 ]
Chen, Zhishan [3 ]
Cao, Chen [1 ]
Shu, Xiao-Ou [3 ]
Zheng, Wei [3 ]
Long, Quan [1 ,4 ,5 ,6 ,7 ]
Guo, Xingyi [3 ,8 ]
机构
[1] Univ Calgary, Dept Biochem & Mol Biol, Calgary, AB, Canada
[2] Cent South Univ, Xiangya Hosp, Dept Oncol, Changsha, Hunan, Peoples R China
[3] Vanderbilt Univ, Sch Med, Vanderbilt Ingram Canc Ctr, Div Epidemiol,Dept Med,Vanderbilt Epidemiol Ctr, Nashville, TN 37212 USA
[4] Univ Calgary, Dept Med Genet, Calgary, AB, Canada
[5] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
[6] Univ Calgary, Alberta Childrens Hosp, Res Inst, Calgary, AB, Canada
[7] Univ Calgary, Hotchkiss Brain Inst, Calgary, AB, Canada
[8] Vanderbilt Univ, Sch Med, Dept Biomed Informat, Nashville, TN 37212 USA
基金
美国国家卫生研究院; 加拿大创新基金会;
关键词
BREAST-CANCER; FACTOR-BINDING; RISK VARIANTS; LOCUS; EQTL; EXPRESSION; CHROMATIN; NETWORK;
D O I
10.1038/s41467-022-34888-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transcriptome-wide association studies (TWAS) have successfully discovered many putative disease susceptibility genes. However, TWAS may suffer from inaccuracy of gene expression predictions due to inclusion of non-regulatory variants. By integrating prior knowledge of susceptible transcription factor occupied elements, we develop sTF-TWAS and demonstrate that it outperforms existing TWAS approaches in both simulation and real data analyses. Under the sTF-TWAS framework, we build genetic models to predict alternative splicing and gene expression in normal breast, prostate and lung tissues from the Genotype-Tissue Expression project and apply these models to data from large genome-wide association studies (GWAS) conducted among European-ancestry populations. At Bonferroni-corrected P < 0.05, we identify 354 putative susceptibility genes for these cancers, including 189 previously unreported in GWAS loci and 45 in loci unreported by GWAS. These findings provide additional insight into the genetic susceptibility of human cancers. Additionally, we show the generalizability of the sTF-TWAS on non-cancer diseases. Transcriptome-wide association studies can uncover genes involved in disease. Here, the authors extend the framework with a transcriptome-wide association study approach which incorporates transcription factor occupancy, adding tissue-specific mechanistic support to associations.
引用
收藏
页数:15
相关论文
共 62 条
[1]   IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors [J].
Amariuta, Tiffany ;
Luo, Yang ;
Gazal, Steven ;
Davenport, Emma E. ;
van de Geijn, Bryce ;
Ishigaki, Kazuyoshi ;
Westra, Harm-Jan ;
Teslovich, Nikola ;
Okada, Yukinori ;
Yamamoto, Kazuhiko ;
Price, Alkes L. ;
Raychaudhuri, Soumya .
AMERICAN JOURNAL OF HUMAN GENETICS, 2019, 104 (05) :879-895
[2]  
Bailey MH, 2018, CELL, V173, P371, DOI [10.1016/j.cell.2018.02.060, 10.1016/j.cell.2018.07.034]
[3]   Integrating predicted transcriptome from multiple tissues improves association detection [J].
Barbeira, Alvaro N. ;
Pividori, Milton D. ;
Zheng, Jiamao ;
Wheeler, Heather E. ;
Nicolae, Dan L. ;
Im, Hae Kyung .
PLOS GENETICS, 2019, 15 (01)
[4]   Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics [J].
Barbeira, Alvaro N. ;
Dickinson, Scott P. ;
Bonazzola, Rodrigo ;
Zheng, Jiamao ;
Wheeler, Heather E. ;
Torres, Jason M. ;
Torstenson, Eric S. ;
Shah, Kaanan P. ;
Garcia, Tzintzuni ;
Edwards, Todd L. ;
Stahl, Eli A. ;
Huckins, Laura M. ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Im, Hae Kyung .
NATURE COMMUNICATIONS, 2018, 9
[5]   Transcriptome-wide association study reveals candidate causal genes for lung cancer [J].
Bosse, Yohan ;
Li, Zhonglin ;
Xia, Jun ;
Manem, Venkata ;
Carreras-Torres, Robert ;
Gabriel, Aurelie ;
Gaudreault, Nathalie ;
Albanes, Demetrius ;
Aldrich, Melinda C. ;
Andrew, Angeline ;
Arnold, Susanne ;
Bickeboeller, Heike ;
Bojesen, Stig E. ;
Brennan, Paul ;
Brunnstrom, Hans ;
Caporaso, Neil ;
Chen, Chu ;
Christiani, David C. ;
Field, John K. ;
Goodman, Gary ;
Grankvist, Kjell ;
Houlston, Richard ;
Johansson, Mattias ;
Johansson, Mikael ;
Kiemeney, Lambertus A. ;
Lam, Stephen ;
Landi, Maria T. ;
Lazarus, Philip ;
Le Marchand, Loic ;
Liu, Geoffrey ;
Melander, Olle ;
Rennert, Gadi ;
Risch, Angela ;
Rosenberg, Susan M. ;
Schabath, Matthew B. ;
Shete, Sanjay ;
Song, Zhuoyi ;
Stevens, Victoria L. ;
Tardon, Adonina ;
Wichmann, H-Erich ;
Woll, Penella ;
Zienolddiny, Shan ;
Obeidat, Ma'en ;
Timens, Wim ;
Hung, Rayjean J. ;
Joubert, Philippe ;
Amos, Christopher I. ;
McKay, James D. .
INTERNATIONAL JOURNAL OF CANCER, 2020, 146 (07) :1862-1878
[6]   Power analysis of transcriptome-wide association study: Implications for practical protocol choice [J].
Cao, Chen ;
Ding, Bowei ;
Li, Qing ;
Kwok, Devin ;
Wu, Jingjing ;
Long, Quan .
PLOS GENETICS, 2021, 17 (02)
[7]   kTWAS: integrating kernel machine with transcriptome-wide association studies improves statistical power and reveals novel genes [J].
Cao, Chen ;
Kwok, Devin ;
Edie, Shannon ;
Li, Qing ;
Ding, Bowei ;
Kossinna, Pathum ;
Campbell, Simone ;
Wu, Jingjing ;
Greenberg, Matthew ;
Long, Quan .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
[8]   Regulators of genetic risk of breast cancer identified by integrative network analysis [J].
Castro, Mauro A. A. ;
de Santiago, Ines ;
Campbell, Thomas M. ;
Vaughn, Courtney ;
Hickey, Theresa E. ;
Ross, Edith ;
Tilley, Wayne D. ;
Markowetz, Florian ;
Ponder, Bruce A. J. ;
Meyer, Kerstin B. .
NATURE GENETICS, 2016, 48 (01) :12-+
[9]   Identifying Putative Susceptibility Genes and Evaluating Their Associations with Somatic Mutations in Human Cancers [J].
Chen, Zhishan ;
Wen, Wanqing ;
Beeghly-Fadiel, Alicia ;
Shu, Xiao-ou ;
Diez-Obrero, Virginia ;
Long, Jirong ;
Bao, Jiandong ;
Wang, Jing ;
Liu, Qi ;
Cai, Qiuyin ;
Moreno, Victor ;
Zheng, Wei ;
Guo, Xingyi .
AMERICAN JOURNAL OF HUMAN GENETICS, 2019, 105 (03) :477-492
[10]   Common variants in signaling transcription-factor-binding sites drive phenotypic variability in red blood cell traits [J].
Choudhuri, Avik ;
Trompouki, Eirini ;
Abraham, Brian J. ;
Colli, Leandro M. ;
Kock, Kian Hong ;
Mallard, William ;
Yang, Min-Lee ;
Vinjamur, Divya S. ;
Ghamari, Alireza ;
Sporrij, Audrey ;
Hoi, Karen ;
Hummel, Barbara ;
Boatman, Sonja ;
Chan, Victoria ;
Tseng, Sierra ;
Nandakumar, Satish K. ;
Yang, Song ;
Lichtig, Asher ;
Superdock, Michael ;
Grimes, Seraj N. ;
Bowman, Teresa V. ;
Zhou, Yi ;
Takahashi, Shinichiro ;
Joehanes, Roby ;
Cantor, Alan B. ;
Bauer, Daniel E. ;
Ganesh, Santhi K. ;
Rinn, John ;
Albert, Paul S. ;
Bulyk, Martha L. ;
Chanock, Stephen J. ;
Young, Richard A. ;
Zon, Leonard I. .
NATURE GENETICS, 2020, 52 (12) :1333-1345