Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers

被引:18
|
作者
He, Jingni [1 ,2 ]
Wen, Wanqing [3 ]
Beeghly, Alicia [3 ]
Chen, Zhishan [3 ]
Cao, Chen [1 ]
Shu, Xiao-Ou [3 ]
Zheng, Wei [3 ]
Long, Quan [1 ,4 ,5 ,6 ,7 ]
Guo, Xingyi [3 ,8 ]
机构
[1] Univ Calgary, Dept Biochem & Mol Biol, Calgary, AB, Canada
[2] Cent South Univ, Xiangya Hosp, Dept Oncol, Changsha, Hunan, Peoples R China
[3] Vanderbilt Univ, Sch Med, Vanderbilt Ingram Canc Ctr, Div Epidemiol,Dept Med,Vanderbilt Epidemiol Ctr, Nashville, TN 37212 USA
[4] Univ Calgary, Dept Med Genet, Calgary, AB, Canada
[5] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
[6] Univ Calgary, Alberta Childrens Hosp, Res Inst, Calgary, AB, Canada
[7] Univ Calgary, Hotchkiss Brain Inst, Calgary, AB, Canada
[8] Vanderbilt Univ, Sch Med, Dept Biomed Informat, Nashville, TN 37212 USA
基金
美国国家卫生研究院; 加拿大创新基金会;
关键词
BREAST-CANCER; FACTOR-BINDING; RISK VARIANTS; LOCUS; EQTL; EXPRESSION; CHROMATIN; NETWORK;
D O I
10.1038/s41467-022-34888-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transcriptome-wide association studies (TWAS) have successfully discovered many putative disease susceptibility genes. However, TWAS may suffer from inaccuracy of gene expression predictions due to inclusion of non-regulatory variants. By integrating prior knowledge of susceptible transcription factor occupied elements, we develop sTF-TWAS and demonstrate that it outperforms existing TWAS approaches in both simulation and real data analyses. Under the sTF-TWAS framework, we build genetic models to predict alternative splicing and gene expression in normal breast, prostate and lung tissues from the Genotype-Tissue Expression project and apply these models to data from large genome-wide association studies (GWAS) conducted among European-ancestry populations. At Bonferroni-corrected P < 0.05, we identify 354 putative susceptibility genes for these cancers, including 189 previously unreported in GWAS loci and 45 in loci unreported by GWAS. These findings provide additional insight into the genetic susceptibility of human cancers. Additionally, we show the generalizability of the sTF-TWAS on non-cancer diseases. Transcriptome-wide association studies can uncover genes involved in disease. Here, the authors extend the framework with a transcriptome-wide association study approach which incorporates transcription factor occupancy, adding tissue-specific mechanistic support to associations.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers
    Jingni He
    Wanqing Wen
    Alicia Beeghly
    Zhishan Chen
    Chen Cao
    Xiao-Ou Shu
    Wei Zheng
    Quan Long
    Xingyi Guo
    Nature Communications, 13
  • [2] Integrating prior knowledge of transcription factor occupied elements with transcriptome-wide association analysis identifies 153 breast cancer susceptibility genes
    Guo, Xingyi
    He, Jingni
    Beeghly-Fadiel, Alicia
    Chen, Zhishan
    Cao, Chen
    Shu, Xiao-ou
    Zheng, Wei
    Long, Quan
    CANCER RESEARCH, 2022, 82 (12)
  • [3] Transcriptome-wide association study identifies susceptibility genes for rheumatoid arthritis
    Cuiyan Wu
    Sijian Tan
    Li Liu
    Shiqiang Cheng
    Peilin Li
    Wenyu Li
    Huan Liu
    Feng’e Zhang
    Sen Wang
    Yujie Ning
    Yan Wen
    Feng Zhang
    Arthritis Research & Therapy, 23
  • [4] Transcriptome-wide association study identifies susceptibility genes for rheumatoid arthritis
    Wu, Cuiyan
    Tan, Sijian
    Liu, Li
    Cheng, Shiqiang
    Li, Peilin
    Li, Wenyu
    Liu, Huan
    Zhang, Feng'e
    Wang, Sen
    Ning, Yujie
    Wen, Yan
    Zhang, Feng
    ARTHRITIS RESEARCH & THERAPY, 2021, 23 (01)
  • [5] A transcriptome-wide association study identifies novel susceptibility genes for psoriasis
    Zhu, Dongli
    Yao, Shi
    Wu, Hao
    Ke, Xin
    Zhou, Xiaorong
    Geng, Songmei
    Dong, Shanshan
    Chen, Hao
    Yang, Tielin
    Cheng, Ying
    Guo, Yan
    HUMAN MOLECULAR GENETICS, 2022, 31 (02) : 300 - 308
  • [6] Transcriptome-wide association study of multiple myeloma identifies candidate susceptibility genes
    Went, Molly
    Kinnersley, Ben
    Sud, Amit
    Johnson, David C.
    Weinhold, Niels
    Foersti, Asta
    van Duin, Mark
    Orlando, Giulia
    Mitchell, Jonathan S.
    Kuiper, Rowan
    Walker, Brian A.
    Gregory, Walter M.
    Hoffmann, Per
    Jackson, Graham H.
    Noethen, Markus M.
    da Silva Filho, Miguel Inacio
    Thomsen, Hauke
    Broyl, Annemiek
    Davies, Faith E.
    Thorsteinsdottir, Unnur
    Hansson, Markus
    Kaiser, Martin
    Sonneveld, Pieter
    Goldschmidt, Hartmut
    Stefansson, Kari
    Hemminki, Kari
    Nilsson, Bojrn
    Morgan, Gareth J.
    Houlston, Richard S.
    HUMAN GENOMICS, 2019, 13 (01) : 37
  • [7] Transcriptome-wide association study identifies new susceptibility genes and pathways for depression
    Li, Xiaoyan
    Su, Xi
    Liu, Jiewei
    Li, Huijuan
    Li, Ming
    Li, Wenqiang
    Luo, Xiong-Jian
    TRANSLATIONAL PSYCHIATRY, 2021, 11 (01)
  • [8] Transcriptome-Wide Association Study Identifies New Candidate Susceptibility Genes for Glioma
    Atkins, Isabelle
    Kinnersley, Ben
    Ostrom, Quinn T.
    Labreche, Karim
    Il'yasova, Dora
    Armstrong, Georgina N.
    Eckel-Passow, Jeanette E.
    Schoemaker, Minouk J.
    Nothen, Markus M.
    Barnholtz-Sloan, Jill S.
    Swerdlow, Anthony J.
    Simon, Matthias
    Rajaraman, Preetha
    Chanock, Stephen J.
    Shildkraut, Joellen
    Bernstein, Jonine L.
    Hoffman, Per
    Jockel, Karl-Heinz
    Lai, Rose K.
    Claus, Elizabeth B.
    Olson, Sara H.
    Johansen, Christoffer
    Wrensch, Margaret R.
    Melin, Beatrice
    Jenkins, Robert B.
    Sanson, Marc
    Bondy, Melissa L.
    Houlston, Richard S.
    CANCER RESEARCH, 2019, 79 (08) : 2065 - 2071
  • [9] Transcriptome-wide association study identifies new susceptibility genes and pathways for spondyloarthritis
    Su, Xiaochen
    Chen, Anfa
    Teng, Menghao
    Ji, Wenchen
    Zhang, Yingang
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2023, 18 (01)
  • [10] A transcriptome-wide association study identifies susceptibility genes for Parkinson’s disease
    Shi Yao
    Xi Zhang
    Shu-Cheng Zou
    Yong Zhu
    Bo Li
    Wei-Ping Kuang
    Yan Guo
    Xiao-Song Li
    Liang Li
    Xiao-Ye Wang
    npj Parkinson's Disease, 7