Microfluidic Platform for Time-Resolved Characterization of Protein Higher-Order Structures and Dynamics Using Top-Down Mass Spectrometry

被引:9
作者
Li, Wen [1 ]
Chaihu, Lingxiao [2 ,3 ]
Jiang, Jialu [2 ]
Wu, Bizhu [1 ]
Zheng, Xuan [1 ]
Dai, Rongrong [2 ]
Tian, Ye [3 ]
Huang, Yanyi [3 ,4 ]
Wang, Guanbo [3 ,4 ]
Men, Yongfan [1 ]
机构
[1] Chinese Acad Sci, Res Ctr Biomed Opt & Mol Imaging, Inst Biomed & Hlth Engn, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] Nanjing Normal Univ, Sch Chem & Mat Sci, Nanjing 210023, Peoples R China
[3] Shenzhen Bay Lab, Inst Cell Anal, Shenzhen 518132, Peoples R China
[4] Peking Univ, Biomed Pioneering Innovat Ctr, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROSPRAY-IONIZATION DEVICES; CAPILLARY-ELECTROPHORESIS; HYDROGEN-EXCHANGE; CHIP; MS; UBIQUITIN; MIXER; STATE; FABRICATION; EFFICIENCY;
D O I
10.1021/acs.analchem.2c00077
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Characterization of protein higher-order structures and dynamics is essential for understanding the biological functions of proteins and revealing the underlying mechanisms. Top down mass spectrometry (MS) accesses structural information at both the intact protein level and the peptide fragment level. Native top-down MS allows analysis of a protein complex's architecture and subunits' identity and modifications. Top-down hydrogen/deuterium exchange (HDX) MS oilers high spatial resolution for conformational or binding interface analysis and enables conformer-specific characterization. A microfluidic chip can provide superior performance for front-end reactions useful for these MS workflows, such as flexibility in manipulating multiple reactant flows, integrating various functional modules, and automation. However, most microchip-MS devices are designed for bottom-up approaches or top-down proteomics. Here, we demonstrate a strategy for designing a microchip for top- down MS analysis of protein higher-order structures and dynamics. It is suitable for time-resolved native MS and HDX MS, with designs aiming for efficient ionization of intact protein complexes, flexible manipulation of multiple reactant flows, and precise control of reaction times over a broad range of flow rates on the submicroliter per minute scale. The performance of the prototype device is demonstrated by measurements of systems including monoclonal antibodies, antibody-antigen complexes, and coexisting protein conformers. This strategy may benefit elaborate structural analysis of biomacromolecules and inspire method development using the microchip-MS approach.
引用
收藏
页码:7520 / 7527
页数:8
相关论文
共 81 条
[51]   Characterizing Short-Lived Protein Folding Intermediates by Top-Down Hydrogen Exchange Mass Spectrometry [J].
Pan, Jingxi ;
Han, Jun ;
Borchers, Christoph H. ;
Konermann, Lars .
ANALYTICAL CHEMISTRY, 2010, 82 (20) :8591-8597
[52]   Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing [J].
Park, Sung-Gyu ;
Lee, Seung-Kon ;
Moon, Jun Hyuk ;
Yang, Seung-Man .
LAB ON A CHIP, 2009, 9 (21) :3144-3150
[53]   Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics [J].
Pedde, R. Daniel ;
Li, Huiyan ;
Borchers, Christoph H. ;
Akbari, Mohsen .
TRENDS IN BIOTECHNOLOGY, 2017, 35 (10) :954-970
[54]   From micro- to nanofabrication with soft materials [J].
Quake, SR ;
Scherer, A .
SCIENCE, 2000, 290 (5496) :1536-1540
[55]   A Review of Passive Micromixers with a Comparative Analysis [J].
Raza, Wasim ;
Hossain, Shakhawat ;
Kim, Kwang-Yong .
MICROMACHINES, 2020, 11 (05)
[56]   Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles [J].
Reategui, Eduardo ;
van der Vos, Kristan E. ;
Lai, Charles P. ;
Zeinali, Mahnaz ;
Atai, Nadia A. ;
Aldikacti, Berent ;
Floyd, Frederick P., Jr. ;
Khankhel, Aimal H. ;
Thapar, Vishal ;
Hochberg, Fred H. ;
Sequist, Lecia V. ;
Nahed, Brian V. ;
Carter, Bob S. ;
Toner, Mehmet ;
Balaj, Leonora ;
Ting, David T. ;
Breakefield, Xandra O. ;
Stott, Shannon L. .
NATURE COMMUNICATIONS, 2018, 9
[57]   Analysis of Hemoglobin Glycation Using Microfluidic CE-MS: A Rapid, Mass Spectrometry Compatible Method for Assessing Diabetes Management [J].
Redman, Erin A. ;
Ramos-Payan, Maria ;
Mellors, J. Scott ;
Ramsey, J. Michael .
ANALYTICAL CHEMISTRY, 2016, 88 (10) :5324-5330
[58]   Integrated Microfluidic Capillary Electrophoresis-Electrospray Ionization Devices with Online MS Detection for the Separation and Characterization of Intact Monoclonal Antibody Variants [J].
Redman, Erin A. ;
Batz, Nicholas G. ;
Mellors, J. Scott ;
Ramsey, J. Michael .
ANALYTICAL CHEMISTRY, 2015, 87 (04) :2264-2272
[59]   Changes in Signal Transducer and Activator of Transcription 3 (STAT3) Dynamics Induced by Complexation with Pharmacological Inhibitors of Src Homology 2 (SH2) Domain Dimerization [J].
Resetca, Diana ;
Haftchenary, Sina ;
Gunning, Patrick T. ;
Wilson, Derek J. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (47) :32538-32547
[60]  
Resetca D, 2013, FEBS J, V280, P5616, DOI 10.1111/febs.12332