A multi-scale FEM-BEM formulation for contact mechanics between rough surfaces

被引:18
|
作者
Bonari, Jacopo [1 ]
Marulli, Maria R. [1 ]
Hagmeyer, Nora [2 ]
Mayr, Matthias [2 ]
Popp, Alexander [2 ]
Paggi, Marco [1 ]
机构
[1] IMT Sch Adv Studies Lucca, Piazza San Francesco 19, I-55100 Lucca, Italy
[2] Univ Bundeswehr Munich, Inst Math & Comp Based Simulat, 9 Werner Heisenberg Weg, D-85577 Neubiberg, Germany
关键词
Contact mechanics; Roughness; Finite element method; Boundary element method; Multi-scale method; GREENWOOD; MODELS;
D O I
10.1007/s00466-019-01791-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A novel multi-scale finite element formulation for contact mechanics between nominally smooth but microscopically rough surfaces is herein proposed. The approach integrates the interface finite element method (FEM) for modelling interface interactions at the macro-scale with a boundary element method (BEM) for the solution of the contact problem at the micro-scale. The BEM is used at each integration point to determine the normal contact traction and the normal contact stiffness, allowing to take into account any desirable kind of rough topology, either real, e.g. obtained from profilometric data, or artificial, evaluated with the most suitable numerical or analytical approach. Different numerical strategies to accelerate coupling between FEM and BEM are discussed in relation to a selected benchmark test.
引用
收藏
页码:731 / 749
页数:19
相关论文
共 50 条
  • [1] A multi-scale FEM-BEM formulation for contact mechanics between rough surfaces
    Jacopo Bonari
    Maria R. Marulli
    Nora Hagmeyer
    Matthias Mayr
    Alexander Popp
    Marco Paggi
    Computational Mechanics, 2020, 65 : 731 - 749
  • [2] A multi-scale model for contact between rough surfaces
    Jackson, Robert L.
    Streator, Jeffrey L.
    WEAR, 2006, 261 (11-12) : 1337 - 1347
  • [3] A new efficient algorithm for multi-scale rough surfaces contact mechanics
    Zhang, Jun
    Huang, Yiyong
    2016 3RD INTERNATIONAL CONFERENCE ON MECHANICS AND MECHATRONICS RESEARCH (ICMMR 2016), 2016, 77
  • [4] FEM/BEM formulation for multi-scale analysis of stretched plates
    Fernandes, G. R.
    Pituba, J. J. C.
    Neto, E. A. de Souza
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 54 : 47 - 59
  • [5] A Symmetric Interior Penalty FEM-BEM Formulation
    Allilomes, Peter
    Rawat, Vinnet
    Lee, Jin-Fa
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 517 - 520
  • [6] A 3D FEM-BEM rolling contact formulation for unstructured meshes
    Rodriguez-Tembleque, L.
    Abascal, R.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (02) : 330 - 353
  • [7] On a FEM-BEM formulation for an exterior quasilinear problem in the plane
    Meddahi, S
    González, M
    Pérez, P
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (06) : 1820 - 1837
  • [8] A coupling of FEM-BEM for a kind of Signorini contact problem
    Hu, QY
    Yu, DH
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (07): : 895 - 906
  • [9] A coupling of FEM-BEM for a kind of Signorini contact problem
    Qiya Hu
    Dehao Yu
    Science in China Series A: Mathematics, 2001, 44 : 895 - 906
  • [10] A coupling of FEM-BEM for a kind of Signorini contact problem
    胡齐芽
    余德浩
    Science China Mathematics, 2001, (07) : 895 - 906