Performance of a Shack-Hartmann Wavefront sensor using real sodium laser data.

被引:0
|
作者
Thomas, Sandrine J. [1 ]
Gavel, Donald [1 ]
Muller, Nicolas [2 ]
Michau, Vincent [2 ]
Fusco, Thierry [2 ]
机构
[1] UCSC, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95060 USA
[2] Off Natl Etud & Rech Aerosp, F-92322 Chatillon, France
来源
ADAPTIVE OPTICS SYSTEMS II | 2010年 / 7736卷
关键词
Adaptive Optics; wavefront sensing; wavefront correction; STAR ADAPTIVE OPTICS; ABERRATIONS; SCIENCE; DESIGN;
D O I
10.1117/12.857600
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The future of adaptive optics includes laser guide stars. While they are a great solution to sky coverage, they do introduce additional errors in the adaptive optics system. In particular, because of the finite thickness of the sodium layer, there is reduced centroiding accuracy due to elongated spots in the wavefront sensor. These become even more pronounced on large telescope apertures. In this paper we focus on the performance of a Shack-Hartmann wavefront sensor for 30m-plus large aperture telescopes studying the consequences of both the decrease in signal to noise ratio due to the spot elongation and the variations of the sodium density variations in the mesosphere. We incorporate real on-sky measurements of the return from the sodium layer using images of the laser guide star taken at Lick Observatory and simulate the expected wavefront reconstruction performance in the case of a Thirty Meter Telescope. Using this ensemble of data, we compare performance for various Hartmann centroiding methods, including correlation and weighted least square algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] TURBULENT PARAMETERS AT DIFFERENT HEIGHTS IN THE ATMOSPHERE. SHACK-HARTMANN WAVEFRONT SENSOR DATA
    Shikhovtsev, A. Yu.
    Kiselev, A. V.
    Kovadlo, P. G.
    Kolobov, D. Yu.
    Russkikh, I. V.
    Tomin, V. E.
    SOLAR-TERRESTRIAL PHYSICS, 2022, 8 (02): : 20 - 25
  • [42] Adaptive Shack-Hartmann sensor
    Seifert, L
    Liesener, J
    Tiziani, HJ
    OPTICAL MEASUREMENT SYSTEMS FOR INDUSTRIAL INSPECTION III, 2003, 5144 : 250 - 258
  • [43] Measurement error for a Shack-Hartmann wavefront sensor in strong scintillation conditions
    Plett, ML
    Barbier, PR
    Rush, DW
    Polak-Dingels, P
    Levine, BM
    PROPAGATION AND IMAGING THROUGH THE ATMOSPHERE II, 1998, 3433 : 211 - 220
  • [44] Accounting for intensity variation within pixels of Shack-Hartmann wavefront sensors
    Sangiri, Suman
    Dubra, Alfredo
    Akondi, Vyas
    Optik, 2024, 319
  • [45] Improved wavefront reconstruction algorithm for Shack-Hartmann type wavefront sensors
    Pathak, Biswajit
    Boruah, Bosanta R.
    JOURNAL OF OPTICS, 2014, 16 (05)
  • [46] Comparison of wavefront sensing with the Shack-Hartmann and pyramid sensors
    Clare, RM
    Lane, RG
    ADVANCEMENTS IN ADAPTIVE OPTICS, PTS 1-3, 2004, 5490 : 1211 - 1222
  • [47] Comparison of a Shack-Hartmann and distorted grating wavefront sensor using WaveTrain™ simulation software
    Erry, GRG
    Harrison, P
    Otten, LJ
    Weaver, L
    OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS VII, 2004, 5572 : 319 - 329
  • [48] The adaptive Shack-Hartmann sensor
    Seifert, L
    Liesener, J
    Tiziani, H
    OPTICS COMMUNICATIONS, 2003, 216 (4-6) : 313 - 319
  • [49] Wavefront Reconstruction by a Defocused Shack-Hartmann Sensor Based on Moment of Spot
    Feng Fan
    Li Changwei
    Zhang Sijiong
    ACTA OPTICA SINICA, 2018, 38 (06)
  • [50] Zonal wavefront reconstruction of Shack-Hartmann and Hartmann patterns with hexagonal cells
    Javier Gantes-Nunez, Francisco
    Malacara-Hernandez, Zacarias
    Malacara-Doblado, Daniel
    Malacara-Hernandez, Daniel
    OPTICS COMMUNICATIONS, 2018, 427 : 61 - 69