Performance of a Shack-Hartmann Wavefront sensor using real sodium laser data.

被引:0
|
作者
Thomas, Sandrine J. [1 ]
Gavel, Donald [1 ]
Muller, Nicolas [2 ]
Michau, Vincent [2 ]
Fusco, Thierry [2 ]
机构
[1] UCSC, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95060 USA
[2] Off Natl Etud & Rech Aerosp, F-92322 Chatillon, France
来源
ADAPTIVE OPTICS SYSTEMS II | 2010年 / 7736卷
关键词
Adaptive Optics; wavefront sensing; wavefront correction; STAR ADAPTIVE OPTICS; ABERRATIONS; SCIENCE; DESIGN;
D O I
10.1117/12.857600
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The future of adaptive optics includes laser guide stars. While they are a great solution to sky coverage, they do introduce additional errors in the adaptive optics system. In particular, because of the finite thickness of the sodium layer, there is reduced centroiding accuracy due to elongated spots in the wavefront sensor. These become even more pronounced on large telescope apertures. In this paper we focus on the performance of a Shack-Hartmann wavefront sensor for 30m-plus large aperture telescopes studying the consequences of both the decrease in signal to noise ratio due to the spot elongation and the variations of the sodium density variations in the mesosphere. We incorporate real on-sky measurements of the return from the sodium layer using images of the laser guide star taken at Lick Observatory and simulate the expected wavefront reconstruction performance in the case of a Thirty Meter Telescope. Using this ensemble of data, we compare performance for various Hartmann centroiding methods, including correlation and weighted least square algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Improving wavefront sensing with a Shack-Hartmann device
    Rais, Martin
    Morel, Jean-Michel
    Thiebaut, Carole
    Delvit, Jean-Marc
    Facciolo, Gabriele
    APPLIED OPTICS, 2016, 55 (28) : 7836 - 7846
  • [32] Scene-based Shack-Hartmann Wavefront Sensor for Light-Sheet Microscopy
    Lawrence, Keelan
    Liu, Yang
    Dale, Savannah
    Ball, Rebecca
    VanLeuven, Ariel J.
    Sornborger, Andrew
    Lauderdale, James D.
    Kner, Peter
    ADAPTIVE OPTICS AND WAVEFRONT CONTROL FOR BIOLOGICAL SYSTEMS IV, 2018, 10502
  • [33] Anisoplanatism in Shack-Hartmann wavefront sensing
    Robert, C
    Conan, JM
    Michau, V
    Fusco, T
    OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS VII, 2004, 5572 : 223 - 234
  • [34] Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor
    Murphy, Kevin
    Burke, Daniel
    Devaney, Nicholas
    Dainty, Chris
    OPTICS EXPRESS, 2010, 18 (15): : 15448 - 15460
  • [35] Fundamental and specific steps in Shack-Hartmann wavefront sensor design
    Curatu, Costin
    Curatu, George
    Rolland, Jannick
    CURRENT DEVELOPMENTS IN LENS DESIGN AND OPTICAL ENGINEERING VII, 2006, 6288
  • [36] Application of Shack-Hartmann wavefront sensor for testing optical systems
    Novak, Jiri
    Novak, Pavel
    Miks, Antonin
    15TH CZECH-POLISH-SLOVAK CONFERENCE ON WAVE AND QUANTUM ASPECTS OF CONTEMPORARY OPTICS, 2007, 6609
  • [37] Modified Shack-Hartmann wavefront sensor using an array of superresolution pupil filters
    Rios, Susana
    Lopez, David
    OPTICS EXPRESS, 2009, 17 (12): : 9669 - 9679
  • [38] Fast and accurate wavefront sensing algorithm of Shack-Hartmann sensor for adaptive optics
    Yoo, Jae Eun
    Youn, Sung Kie
    ASTRONOMICAL ADAPTATIVE OPTICS SYSTEMS AND APPLICATIONS III, 2007, 6691
  • [39] Shack-Hartmann wavefront sensor with the precorrected holographic lenslet array
    Podanchuk, D. V.
    Dan'ko, V. P.
    Goloborodko, A. A.
    Goloborodko, N. S.
    OPTIK, 2017, 131 : 520 - 526
  • [40] Real-time implementation of the spiral algorithm for Shack-Hartmann wavefront sensor pattern sorting on an FPGA
    Mauch, Steffen
    Reger, Johann
    MEASUREMENT, 2016, 92 : 63 - 69