Simulating low-energy neutrino interactions with MARLEY

被引:35
作者
Gardiner, Steven [1 ,2 ]
机构
[1] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[2] Univ Calif Davis, One Shields Ave, Davis, CA 95616 USA
关键词
Event generator; Neutrino-nucleus scattering; Tens-of-MeV; SUPERNOVA-NEUTRINO; MONTE-CARLO; SOLAR-NEUTRINO; SPECTRAL-FUNCTION; CHARGED-CURRENT; DOUBLE-BETA; NUCLEUS; SCATTERING; GENERATOR; SPECTROSCOPY;
D O I
10.1016/j.cpc.2021.108123
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Monte Carlo event generators are a critical tool for the interpretation of data obtained by neutrino experiments. Several modern event generators are available which are well-suited to the GeV energy scale used in studies of accelerator neutrinos. However, theoretical modeling differences make their immediate application to lower energies difficult. In this paper, I present a new event generator, MARLEY, which is designed to better address the simulation needs of the low-energy (tens of MeV and below) neutrino community. The code is written in C++14 with an optional interface to the popular ROOT data analysis framework. The current release of MARLEY (version 1.2.0) emphasizes simulations of the reaction Ar-40(nu(e), e(-))K-40* but is extensible to other channels with suitable user input. This paper provides detailed documentation of MARLEY's implementation and usage, including guidance on how generated events may be analyzed and how MARLEY may be interfaced with external codes such as Geant4. Further information about MARLEY is available on the official website at http://www.marleygen.org. (C) 2021 The Author. Published by Elsevier B.V.
引用
收藏
页数:46
相关论文
共 50 条
[41]   Low-energy electron collisions with acetic acid [J].
Freitas, T. C. ;
Varella, M. T. do N. ;
da Costa, R. F. ;
Lima, M. A. P. ;
Bettega, M. H. F. .
PHYSICAL REVIEW A, 2009, 79 (02)
[42]   Oxidation of Thallium by Low-Energy Oxygen Ions [J].
Ashkhotov, O. G. ;
Ashkhotova, I. B. ;
Magkoev, T. T. ;
Sotskov, V. A. .
RUSSIAN PHYSICS JOURNAL, 2022, 65 (02) :260-262
[43]   EXPLORING QUANTUM VACUUM WITH LOW-ENERGY PHOTONS [J].
Milotti, E. ;
Della Valle, F. ;
Zavattini, G. ;
Messineo, G. ;
Gastaldi, U. ;
Pengo, R. ;
Ruoso, G. ;
Babusci, D. ;
Curceanu, C. ;
Iliescu, M. ;
Milardi, C. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (08)
[44]   Elastic scattering of low-energy electrons by nitromethane [J].
Lopes, A. R. ;
Sanchez, S. d'A. ;
Bettega, M. H. F. .
PHYSICAL REVIEW A, 2011, 83 (06)
[45]   Solid Ammonia Charging by Low-Energy Electrons [J].
Sagi, Roey ;
Akerman, Michelle ;
Ramakrishnan, Sujith ;
Asscher, Micha .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (07) :3845-3858
[46]   Avalanche photodiode for measurement of low-energy electrons [J].
Ogasawara, K ;
Asamura, K ;
Mukai, T ;
Saito, Y .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 545 (03) :744-752
[47]   Oxidation of Thallium by Low-Energy Oxygen Ions [J].
O. G. Ashkhotov ;
I. B. Ashkhotova ;
T. T. Magkoev ;
V. A. Sotskov .
Russian Physics Journal, 2022, 65 :260-262
[48]   SEY and low-energy SEY of conductive surfaces [J].
Cimino, R. ;
Angelucci, M. ;
Gonzalez, L. A. ;
Larciprete, R. .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2020, 241
[49]   Low-energy antiprotons physics and the FLAIR facility [J].
Widmann, E. .
PHYSICA SCRIPTA, 2015, T166
[50]   Low-energy electron collisions with formamide using the R-matrix method [J].
Wang, Yong-Feng ;
Tian, Shan Xi .
PHYSICAL REVIEW A, 2012, 85 (01)