Counting numerical semigroups by genus and even gaps

被引:6
作者
Bernardini, Matheus [1 ,2 ]
Torres, Fernando [1 ]
机构
[1] IMECC UNICAMP, R Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
[2] Inst Fed Sao Paulo, Av Comendador Aladin Selmi, BR-13069901 Campinas, SP, Brazil
关键词
Numerical semigroup; Even gap; Genus; gamma-hyperelliptic semigroup; f(gamma) sequence; WEIERSTRASS SEMIGROUPS; DOUBLE COVERINGS; NUMBER; DOUBLES; POINTS; WEIGHT; CURVES;
D O I
10.1016/j.disc.2017.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n(g) be the number of numerical semigroups of genus g. We present an approach to compute n(g) by using even gaps, and the question: Is it true that n(g+1) > n(g) ? is investigated. Let N-gamma(g) be the number of numerical semigroups of genus g whose number of even gaps equals gamma. We show that N-gamma(g) = N-gamma (3 gamma) for gamma <= left perpendicularg/3right perpendicular and N-gamma(g) = 0 for gamma > left perpendicular2g/3right perpendicular; thus the question above is true provided that N-gamma(g + 1) > N-gamma(g) for y = left perpendicularg/3right perpendicular + 1, ... , left perpendicular2g/3right perpendicular. We also show that N-gamma (3 gamma) coincides with f(gamma), the number introduced by Bras-Amords (2012) in connection with semigroup-closed sets. Finally, the stronger possibility f(gamma) similar to phi(2 gamma) arises being phi = (1 + root 5)/2 the golden number. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2853 / 2863
页数:11
相关论文
共 50 条
  • [41] Quasi-polynomial growth of numerical and affine semigroups with constrained gaps
    Michael DiPasquale
    Bryan R. Gillespie
    Chris Peterson
    Semigroup Forum, 2023, 107 : 60 - 78
  • [42] Fibonacci-like growth of numerical semigroups of a given genus
    Zhai, Alex
    SEMIGROUP FORUM, 2013, 86 (03) : 634 - 662
  • [43] The Frobenius number in the set of numerical semigroups with fixed multiplicity and genus
    Robles-Perez, Aureliano M.
    Carlos Rosales, Jose
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (04) : 1003 - 1011
  • [44] Fibonacci-like growth of numerical semigroups of a given genus
    Alex Zhai
    Semigroup Forum, 2013, 86 : 634 - 662
  • [45] Sparse Numerical Semigroups
    Munuera, C.
    Torres, F.
    Villanueva, J.
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES, 2009, 5527 : 23 - +
  • [46] On the weight of numerical semigroups
    Oliveira, G.
    Torres, F.
    Villanueva, J.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (11) : 1955 - 1961
  • [47] Perfect numerical semigroups
    Moreno Frias, Maria Angeles
    Carlos Rosales, Jose
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (03) : 1742 - 1754
  • [48] Parity numerical semigroups
    Angeles Moreno-Frias, Maria
    Carlos Rosales, Jose
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (03): : 1067 - 1075
  • [49] Geometrical illustration of numerical semigroups and of some of their invariants
    Kunz, E.
    Waldi, R.
    SEMIGROUP FORUM, 2014, 89 (03) : 664 - 691
  • [50] Algorithms and basic asymptotics for generalized numerical semigroups in N
    Failla, Gioia
    Peterson, Chris
    Utano, Rosanna
    SEMIGROUP FORUM, 2016, 92 (02) : 460 - 473