Counting numerical semigroups by genus and even gaps

被引:6
|
作者
Bernardini, Matheus [1 ,2 ]
Torres, Fernando [1 ]
机构
[1] IMECC UNICAMP, R Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
[2] Inst Fed Sao Paulo, Av Comendador Aladin Selmi, BR-13069901 Campinas, SP, Brazil
关键词
Numerical semigroup; Even gap; Genus; gamma-hyperelliptic semigroup; f(gamma) sequence; WEIERSTRASS SEMIGROUPS; DOUBLE COVERINGS; NUMBER; DOUBLES; POINTS; WEIGHT; CURVES;
D O I
10.1016/j.disc.2017.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n(g) be the number of numerical semigroups of genus g. We present an approach to compute n(g) by using even gaps, and the question: Is it true that n(g+1) > n(g) ? is investigated. Let N-gamma(g) be the number of numerical semigroups of genus g whose number of even gaps equals gamma. We show that N-gamma(g) = N-gamma (3 gamma) for gamma <= left perpendicularg/3right perpendicular and N-gamma(g) = 0 for gamma > left perpendicular2g/3right perpendicular; thus the question above is true provided that N-gamma(g + 1) > N-gamma(g) for y = left perpendicularg/3right perpendicular + 1, ... , left perpendicular2g/3right perpendicular. We also show that N-gamma (3 gamma) coincides with f(gamma), the number introduced by Bras-Amords (2012) in connection with semigroup-closed sets. Finally, the stronger possibility f(gamma) similar to phi(2 gamma) arises being phi = (1 + root 5)/2 the golden number. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2853 / 2863
页数:11
相关论文
共 50 条
  • [11] Numerical semigroups of genus six and double coverings of curves of genus three
    Harui, Takeshi
    Komeda, Jiryo
    SEMIGROUP FORUM, 2015, 91 (03) : 601 - 610
  • [12] Numerical semigroups of genus seven and double coverings of curves of genus three
    Takeshi Harui
    Jiryo Komeda
    Semigroup Forum, 2015, 90 : 491 - 502
  • [13] Numerical semigroups of genus eight and double coverings of curves of genus three
    Harui, Takeshi
    Komeda, Jiryo
    SEMIGROUP FORUM, 2014, 89 (03) : 571 - 581
  • [14] Numerical semigroups of genus seven and double coverings of curves of genus three
    Harui, Takeshi
    Komeda, Jiryo
    SEMIGROUP FORUM, 2015, 90 (02) : 491 - 502
  • [15] Non-K3 Weierstrass numerical semigroups
    Komeda, Jiryo
    Mase, Makiko
    SEMIGROUP FORUM, 2024, 108 (01) : 221 - 257
  • [16] On certain families of sparse numerical semigroups with Frobenius number even
    Tizziotti, Guilherme
    Villanueva, Juan
    ALGEBRA AND DISCRETE MATHEMATICS, 2019, 27 (01): : 99 - 116
  • [17] Counting the ideals with given genus of a numerical semigroup
    Moreno-Frias, M. A.
    Rosales, J. C.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (08)
  • [18] Fundamental Gaps in Numerical Semigroups with Respect to Their Multiplicity
    J. C. Rosales
    P. A. García-Sánchez
    J. I. García-García
    J. A. Jiménez Madrid
    Acta Mathematica Sinica, 2004, 20 : 629 - 646
  • [19] Fundamental Gaps in Numerical Semigroups with Respect to Their Multiplicity
    J.C.ROSALES
    P.A.GARCíA-SNCHEZ
    J.I.GARCíA-GARCíA
    J.A.JIMNEZ MADRID
    Acta Mathematicae Applicatae Sinica, 2004, (04) : 629 - 646
  • [20] Fundamental gaps in numerical semigroups with respect to their multiplicity
    Rosales, JC
    García-Sánchez, PA
    García-García, JI
    Madrid, JAJ
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (04) : 629 - 646