Counting numerical semigroups by genus and even gaps

被引:6
|
作者
Bernardini, Matheus [1 ,2 ]
Torres, Fernando [1 ]
机构
[1] IMECC UNICAMP, R Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
[2] Inst Fed Sao Paulo, Av Comendador Aladin Selmi, BR-13069901 Campinas, SP, Brazil
关键词
Numerical semigroup; Even gap; Genus; gamma-hyperelliptic semigroup; f(gamma) sequence; WEIERSTRASS SEMIGROUPS; DOUBLE COVERINGS; NUMBER; DOUBLES; POINTS; WEIGHT; CURVES;
D O I
10.1016/j.disc.2017.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n(g) be the number of numerical semigroups of genus g. We present an approach to compute n(g) by using even gaps, and the question: Is it true that n(g+1) > n(g) ? is investigated. Let N-gamma(g) be the number of numerical semigroups of genus g whose number of even gaps equals gamma. We show that N-gamma(g) = N-gamma (3 gamma) for gamma <= left perpendicularg/3right perpendicular and N-gamma(g) = 0 for gamma > left perpendicular2g/3right perpendicular; thus the question above is true provided that N-gamma(g + 1) > N-gamma(g) for y = left perpendicularg/3right perpendicular + 1, ... , left perpendicular2g/3right perpendicular. We also show that N-gamma (3 gamma) coincides with f(gamma), the number introduced by Bras-Amords (2012) in connection with semigroup-closed sets. Finally, the stronger possibility f(gamma) similar to phi(2 gamma) arises being phi = (1 + root 5)/2 the golden number. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2853 / 2863
页数:11
相关论文
共 50 条
  • [1] Counting Numerical Semigroups
    Kaplan, Nathan
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (09): : 862 - 875
  • [2] On isolated gaps in numerical semigroups
    Smith, Harold J.
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (01) : 123 - 129
  • [3] Constructing numerical semigroups of a given genus
    Zhao, Yufei
    SEMIGROUP FORUM, 2010, 80 (02) : 242 - 254
  • [4] The set of numerical semigroups of a given genus
    V. Blanco
    J. C. Rosales
    Semigroup Forum, 2012, 85 : 255 - 267
  • [5] The set of numerical semigroups of a given genus
    Blanco, V.
    Rosales, J. C.
    SEMIGROUP FORUM, 2012, 85 (02) : 255 - 267
  • [6] Constructing numerical semigroups of a given genus
    Yufei Zhao
    Semigroup Forum, 2010, 80 : 242 - 254
  • [7] On the Frobenius number and genus of a collection of semigroups generalizing repunit numerical semigroups
    Liu, Feihu
    Xin, Guoce
    Ye, Suting
    Yin, Jingjing
    SEMIGROUP FORUM, 2025, : 357 - 383
  • [8] BOUNDS FOR THE GENUS OF NUMERICAL SEMIGROUPS
    Leher, Eli
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) : 827 - 834
  • [9] Numerical semigroups of genus six and double coverings of curves of genus three
    Takeshi Harui
    Jiryo Komeda
    Semigroup Forum, 2015, 91 : 601 - 610
  • [10] Numerical semigroups of genus eight and double coverings of curves of genus three
    Harui, Takeshi
    Komeda, Jiryo
    SEMIGROUP FORUM, 2014, 89 (03) : 571 - 581