On analysis of kernel collocation methods for spherical PDEs

被引:2
|
作者
Mirzaei, Davoud [1 ,2 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan 8174673441, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran 193955746, Iran
关键词
Partial differential equations; Collocation method; Zonal kernels; Sobolev spaces; Error analysis; SCATTERED DATA INTERPOLATION; DATA APPROXIMATION SCHEME; MESHLESS COLLOCATION; PSEUDODIFFERENTIAL-EQUATIONS; HERMITE INTERPOLATION; MULTIQUADRICS; CONVERGENCE; SPHERES;
D O I
10.1016/j.apnum.2019.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the error analysis of the kernel collocation method for partial differential equations on the unit sphere is presented. A simple analysis is given when the true solutions lie in arbitrary Sobolev spaces. This also extends the previous studies for true solutions outside the associated native spaces. Finally, some experimental results support the theoretical error bounds. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:222 / 232
页数:11
相关论文
共 50 条
  • [1] EXTRINSIC MESHLESS COLLOCATION METHODS FOR PDEs ON MANIFOLDS
    Chen, Meng
    Ling, Leevan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (02) : 988 - 1007
  • [2] Error analysis of kernel/GP methods for nonlinear and parametric PDEs
    Batlle, Pau
    Chen, Yifan
    Hosseini, Bamdad
    Owhadi, Houman
    Stuart, Andrew M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 520
  • [3] Stochastic boundary collocation and spectral methods for solving PDEs
    Sabelfeld, Karl
    Mozartova, Nadezhda
    MONTE CARLO METHODS AND APPLICATIONS, 2012, 18 (03): : 217 - 263
  • [4] Methods for solving elliptic PDEs in spherical coordinates
    Dassios, G.
    Fokas, A. S.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (04) : 1080 - 1096
  • [5] ADI Methods for Cubic Spline Collocation Discretizations of Elliptic PDEs
    Tsompanopoulou, P.
    Vavalis, E.
    SIAM Journal on Scientific Computing, 19 (02):
  • [6] The localized RBFs collocation methods for solving high dimensional PDEs
    Li, Ming
    Chen, Wen
    Chen, C. S.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (10) : 1300 - 1304
  • [7] ADI methods for cubic spline collocation discretizations of elliptic PDEs
    Tsompanopoulou, P
    Vavalis, E
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (02): : 341 - 363
  • [8] Hermite Spectral Collocation Methods for Fractional PDEs in Unbounded Domains
    Tang, Tao
    Yuan, Huifang
    Zhou, Tao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (04) : 1143 - 1168
  • [9] ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS
    Beck, Joakim
    Tempone, Raul
    Nobile, Fabio
    Tamellini, Lorenzo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (09):
  • [10] On a collocation point of view to reproducing kernel methods
    Ferreira, Jose Claudinei
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (06):