Transcriptional regulation of tristetraprolin by transforming growth factor-β in human T cells

被引:52
作者
Ogawa, K
Chen, FF
Kim, YJ
Chen, Y
机构
[1] Indiana Univ, Sch Med, Dept Med & Mol Genet, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sch Med, Dept Microbiol & Immunol, Walther Oncol Ctr, Indianapolis, IN 46202 USA
[3] Walther Canc Inst, Indianapolis, IN 46202 USA
[4] Inst Phys & Chem Res, Lab Cellular Biochem, Wako, Saitama 3510198, Japan
关键词
D O I
10.1074/jbc.M304856200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transforming growth factor-beta (TGF-beta) is a pleiotropic cytokine that plays a critical role in modulating immune response and inflammation. We employed the Affymetrix cDNA microarray system to detect genes whose expression is regulated by TGF-beta1 in a human T cell line HuT78. Tristetraprolin (TTP), a protein involved in the degradation of tumor necrosis factor-alpha (TNF-alpha) mRNA, was found to be up-regulated by TGF-beta. This up-regulation was confirmed by reverse transcriptase-PCR analysis that revealed a rapid and transient induction of TTP mRNA by TGF-beta1 in HuT78 cells, primary human T cells, and THP-1 macrophage-monocyte cells. In addition, de novo protein synthesis was not required for this induction, suggesting that TTP is regulated by TGF-beta at the transcriptional level. To delineate the transcriptional regulation of the TTP gene, a 2.7-kb human TTP promoter region (-2682 to +56 bp relative to the transcription initiation site) was isolated. We found that this promoter was stimulated by TGF-beta1 or a constitutively active TGF-beta type I receptor via TGF-beta-specific Smad proteins. Furthermore, a series of TTP promoter deletion constructs were used to localize the Smad-responsive region to the -583 to -263 bp portion of the promoter. In this region, the TTP promoter contained a stretch of putative Smad-binding elements that had a synergistic effect in mediating Smad activation of the promoter. These putative Smad-binding element-containing sequences were also able to bind Smad3 and Smad4 proteins purified in vitro. As TGF-beta- and TTP-deficient mice exhibit overlapping phenotypes manifested by multifocal inflammation and autoimmunity, our findings that TTP transcription is under the control of TGF-beta signaling would indicate a potential role of TTP in mediating the immune suppressive action of TGF-beta in vivo.
引用
收藏
页码:30373 / 30381
页数:9
相关论文
共 47 条
[1]   T beta RI phosphorylation of Smad2 on Ser(465) and Ser(467) is required for Smad2-Smad4 complex formation and signaling [J].
Abdollah, S ;
MaciasSilva, M ;
Tsukazaki, T ;
Hayashi, H ;
Attisano, L ;
Wrana, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (44) :27678-27685
[2]   A RAPID MICROPREPARATION TECHNIQUE FOR EXTRACTION OF DNA-BINDING PROTEINS FROM LIMITING NUMBERS OF MAMMALIAN-CELLS [J].
ANDREWS, NC ;
FALLER, DV .
NUCLEIC ACIDS RESEARCH, 1991, 19 (09) :2499-2499
[3]   Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability [J].
Carballo, E ;
Lai, WS ;
Blackshear, PJ .
BLOOD, 2000, 95 (06) :1891-1899
[4]   Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin [J].
Carballo, E ;
Lai, WS ;
Blackshear, PJ .
SCIENCE, 1998, 281 (5379) :1001-1005
[5]   A transcriptional partner for MAD proteins in TGF-beta signalling [J].
Chen, X ;
Rubock, MJ ;
Whitman, M .
NATURE, 1996, 383 (6602) :691-696
[6]   Regulation of transforming growth factor beta- and activin-induced transcription by mammalian Mad proteins [J].
Chen, Y ;
Lebrun, JJ ;
Vale, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :12992-12997
[7]   CACHEXIA AND GRAFT-VS-HOST-DISEASE-TYPE SKIN CHANGES IN KERATIN PROMOTER-DRIVEN TNF-ALPHA TRANSGENIC MICE [J].
CHENG, J ;
TURKSEN, K ;
YU, QC ;
SCHREIBER, H ;
TENG, M ;
FUCHS, E .
GENES & DEVELOPMENT, 1992, 6 (08) :1444-1456
[8]   Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene [J].
Dennler, S ;
Itoh, S ;
Vivien, D ;
ten Dijke, P ;
Huet, S ;
Gauthier, JM .
EMBO JOURNAL, 1998, 17 (11) :3091-3100
[9]  
DUBOIS RN, 1990, J BIOL CHEM, V265, P19185
[10]   INHIBITION OF CYTOKINE PRODUCTION BY CYCLOSPORINE-A AND TRANSFORMING GROWTH-FACTOR-BETA [J].
ESPEVIK, T ;
FIGARI, IS ;
SHALABY, MR ;
LACKIDES, GA ;
LEWIS, GD ;
SHEPARD, HM ;
PALLADINO, MA .
JOURNAL OF EXPERIMENTAL MEDICINE, 1987, 166 (02) :571-576