Bipolar resistive switching in Si/Ag nanostructures

被引:9
作者
Dias, C. [1 ,2 ,3 ]
Lv, H. [4 ,5 ]
Picos, R. [6 ]
Aguiar, P. [7 ,8 ]
Cardoso, S. [4 ,5 ]
Freitas, P. P. [4 ,5 ]
Ventura, J. [1 ,2 ,3 ]
机构
[1] Univ Porto, Fac Sci, IFIMUP, Oporto, Portugal
[2] Univ Porto, Fac Sci, Inst Nanotechnol, Oporto, Portugal
[3] Univ Porto, Fac Sci, Dept Phys & Astron, Oporto, Portugal
[4] INESC MN, Lisbon, Portugal
[5] IN Inst Nanosci & Nanotechnol, Lisbon, Portugal
[6] Univ Illes Balears, Phys Dept, Elect Engn Grp, Palma De Mallorca, Spain
[7] Univ Porto, i3S, Oporto, Portugal
[8] Univ Porto, INEB Inst Engn Biomed, Oporto, Portugal
关键词
Resistive switching; Memristor; Metallic filament; Model; MEMORY; DEVICES; MEMRISTORS; RESISTANCE; SYNAPSE; SYSTEMS;
D O I
10.1016/j.apsusc.2017.01.140
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Resistive switching devices are being intensively studied aiming a large number of promising applications such as nonvolatile memories, artificial neural networks and sensors. Here, we show nanoscale bipolar resistive switching in Pt/Si/Ag/TiW structures, with a dielectric barrier thickness of 20 nm. The observed phenomenon is based on the formation/rupture of metallic Ag filaments in the otherwise insulating Si host material. No electroforming process was required to achieve resistive switching. We obtained average values of 0.23 V and -0.24 V for the Set and Reset voltages, respectively. The stability of the switching was observed for over 100 cycles, together with a clear separation of the ON (10(3) Omega) and OFF (10(2) Omega) states. Furthermore, the influence of the Set current compliance on the ON resistance, resistances ratio and Set/Reset voltages percentage variation was also studied. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:122 / 126
页数:5
相关论文
共 28 条
[1]   Memory programming of TiO2-x films by Conductive Atomic Force Microscopy evidencing filamentary resistive switching [J].
Bousoulas, P. ;
Giannopoulos, J. ;
Giannakopoulos, K. ;
Dimitrakis, P. ;
Tsoukalas, D. .
APPLIED SURFACE SCIENCE, 2015, 332 :55-61
[2]   MEMRISTOR - MISSING CIRCUIT ELEMENT [J].
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05) :507-+
[3]   A Theoretical Approach to Memristor Devices [J].
Corinto, Fernando ;
Civalleri, Pier Paolo ;
Chua, Leon O. .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2015, 5 (02) :123-132
[4]   Memristor-based Willshaw network: Capacity and robustness to noise in the presence of defects [J].
Dias, C. ;
Guerra, L. M. ;
Ventura, J. ;
Aguiar, P. .
APPLIED PHYSICS LETTERS, 2015, 106 (22)
[5]   Si/a-Si core/shell nanowires as nonvolatile crossbar switches [J].
Dong, Yajie ;
Yu, Guihua ;
McAlpine, Michael C. ;
Lu, Wei ;
Lieber, Charles M. .
NANO LETTERS, 2008, 8 (02) :386-391
[6]   Resistive switching of reactive sputtered TiO2 based memristor in crossbar geometry [J].
Efeoglu, Hasan ;
Gullulu, Stiheyla ;
Karacali, Tevhit .
APPLIED SURFACE SCIENCE, 2015, 350 :10-13
[7]  
Gao L, 2013, APPL PHYS LETT, V103
[8]   Unipolar Nonvolatile Resistive Switching in Pt/MgO/Ta/Ru Structures Deposited by Magnetron Sputtering [J].
Guerra, L. M. ;
Dias, C. ;
Pereira, J. ;
Lv, H. ;
Cardoso, S. ;
Freitas, P. P. ;
Ventura, J. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (01) :564-567
[9]   The effect of Cu doping concentration on resistive switching of HfO2 film [J].
Guo, Tingting ;
Tan, Tingting ;
Liu, Zhengtang .
APPLIED SURFACE SCIENCE, 2015, 351 :704-708
[10]   CMOS compatible nanoscale nonvolatile resistance, switching memory [J].
Jo, Sung Hyun ;
Lu, Wei .
NANO LETTERS, 2008, 8 (02) :392-397