Kernel spectral angle mapper

被引:24
作者
Camps-Valls, G. [1 ]
机构
[1] Univ Valencia, IPL, Valencia, Spain
基金
欧洲研究理事会;
关键词
HYPERSPECTRAL IMAGE CLASSIFICATION;
D O I
10.1049/el.2016.0661
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This communication introduces a very simple generalisation of the familiar spectral angle mapper (SAM) distance. SAM is perhaps the most widely used distance in chemometrics, hyperspectral imaging, and remote sensing applications. It is shown that a nonlinear version of SAM can be readily obtained by measuring the angle between pairs of vectors in a reproducing kernel Hilbert spaces. The kernel SAM generalises the angle measure to higher-order statistics, it is a valid reproducing kernel, it is universal, and it has consistent geometrical properties that permit deriving a metric easily. We illustrate its performance in a target detection problem using very high resolution imagery. Excellent results and insensitivity to parameter tuning over competing methods make it a valuable choice for many applications.
引用
收藏
页码:1218 / 1219
页数:2
相关论文
共 11 条
[1]  
[Anonymous], 2009, Kernel methods for remote sensing data analysis
[2]   Level set hyperspectral image classification using best band analysis [J].
Ball, John E. ;
Bruce, Lori Mann .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3022-3027
[3]   Improving Discrimination of Savanna Tree Species Through a Multiple-Endmember Spectral Angle Mapper Approach: Canopy-Level Analysis [J].
Cho, Moses Azong ;
Debba, Pravesh ;
Mathieu, Renaud ;
Naidoo, Laven ;
van Aardt, Jan ;
Asner, Gregory P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (11) :4133-4142
[4]   Data processing method applying principal component analysis and spectral angle mapper for imaging spectroscopic sensors [J].
Garcia-Allende, P. Beatriz ;
Conde, Olga M. ;
Mirapeix, Jestis ;
Cubillas, Ana M. ;
Lopez-Higuera, Jose M. .
IEEE SENSORS JOURNAL, 2008, 8 (7-8) :1310-1316
[5]   HYPERSPECTRAL IMAGE CLASSIFICATION AND DIMENSIONALITY REDUCTION - AN ORTHOGONAL SUBSPACE PROJECTION APPROACH [J].
HARSANYI, JC ;
CHANG, CI .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (04) :779-785
[6]   Assessing the Influence of Reference Spectra on Synthetic SAM Classification Results [J].
Hecker, Christoph ;
van der Meijde, Mark ;
van der Werff, Harald ;
van der Meer, Freek D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (12) :4162-4172
[7]   Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries [J].
Keshava, N .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (07) :1552-1565
[8]   THE SPECTRAL IMAGE-PROCESSING SYSTEM (SIPS) - INTERACTIVE VISUALIZATION AND ANALYSIS OF IMAGING SPECTROMETER DATA [J].
KRUSE, FA ;
LEFKOFF, AB ;
BOARDMAN, JW ;
HEIDEBRECHT, KB ;
SHAPIRO, AT ;
BARLOON, PJ ;
GOETZ, AFH .
REMOTE SENSING OF ENVIRONMENT, 1993, 44 (2-3) :145-163
[9]   A comparative analysis of kernel subspace target detectors for hyperspectral imagery [J].
Kwon, Heesung ;
Nasrabadi, Nasser M. .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)
[10]  
Micchelli CA, 2006, J MACH LEARN RES, V7, P2651