A discrete stochastic Gronwall lemma

被引:15
作者
Kruse, Raphael [1 ]
Scheutzow, Michael [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, DE-10623 Berlin, Germany
关键词
Gronwall lemma; Martingale inequality; Backward Euler-Maruyama method; A priori estimate;
D O I
10.1016/j.matcom.2016.07.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of this paper is the derivation of a discrete version of the stochastic Gronwall lemma involving a martingale. The proof is based on a corresponding deterministic version of the discrete Gronwall lemma and an inequality bounding the supremum in terms of the infimum for discrete time martingales. As an application the proof of an a priori estimate for the backward Euler-Maruyama method is included. (C) 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 10 条
[1]  
Banuelos R., 2014, ILLINOIS J MATH, V58, P149
[2]   MORE GENERALIZED DISCRETE GRONWALL-INEQUALITIES [J].
BEESACK, PR .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (12) :589-595
[3]  
Bellman R., 1943, Duke Math. J, V10, P643, DOI DOI 10.1215/S0012-7094-43-01059-2
[4]  
Emmrich E., 1999, PREPRINT
[5]  
Gronwall TH, 1918, ANN MATH, V20, P292
[6]  
Holt J, 2009, NY TIMES BK REV, P8
[7]  
Kloeden PE, 1999, Numerical Solution of Stochastic Differential Equations, Stochastic Modelling and Applied Probability
[8]  
Milstein G. N., 1995, NUMERICAL INTEGRATIO
[9]   A STOCHASTIC GRONWALL LEMMA [J].
Scheutzow, Michael .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 16 (02)
[10]  
[No title captured]