An actin mechanostat ensures hyphal tip sharpness in Phytophthora infestans to achieve host penetration

被引:12
作者
Bronkhorst, Jochem [1 ]
Kots, Kiki [2 ,3 ]
de Jong, Djanick [1 ]
Kasteel, Michiel [2 ,3 ]
van Boxmeer, Thomas [3 ]
Joemmanbaks, Tanweer [3 ]
Govers, Francine [2 ]
van der Gucht, Jasper [1 ]
Ketelaar, Tijs [3 ]
Sprakel, Joris [1 ,4 ]
机构
[1] Wageningen Univ & Res, Phys Chem & Soft Matter, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
[2] Wageningen Univ & Res, Lab Phytopathol, Droevendaalsesteeg 1, NL-6708 PB Wageningen, Netherlands
[3] Wageningen Univ & Res, Lab Cell Biol, Droevendaalsesteeg 1, NL-6708 PB Wageningen, Netherlands
[4] Wageningen Univ & Res, Lab Biochem, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
基金
荷兰研究理事会; 欧洲研究理事会;
关键词
CELL BIOLOGY; POLLEN-TUBE; GROWTH; DYNAMICS; MODEL; MORPHOGENESIS; MICROTUBULES; CYTOSKELETON; MECHANICS; INFECTION;
D O I
10.1126/sciadv.abo0875
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Filamentous plant pathogens apply mechanical forces to pierce their hosts surface and penetrate its tissues. Devastating Phytophthora pathogens harness a specialized form of invasive tip growth to slice through the plant surface, wielding their hypha as a microscopic knife. Slicing requires a sharp hyphal tip that is not blunted at the site of the mechanical interaction. How tip shape is controlled, however, is unknown. We uncover an actin-based mechanostat in Phytophthora infestans that controls tip sharpness during penetration. Mechanical stimulation of the hypha leads to the emergence of an aster-like actin configuration, which shows fast, local, and quantitative feedback to the local stress. We evidence that this functions as an adaptive mechanical scaffold that sharpens the invasive weapon and prevents it from blunting. The hyphal tip mechanostat enables the efficient conversion of turgor into localized invasive pressures that are required to achieve host penetration.
引用
收藏
页数:14
相关论文
共 73 条
  • [1] Agrios GN., 2005, Plant Pathol., V5th
  • [2] Balhadere P. V., 2020, MOL PLANT PATHOL, V1, P1
  • [3] Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus
    Bechinger, C
    Giebel, KF
    Schnell, M
    Leiderer, P
    Deising, HB
    Bastmeyer, M
    [J]. SCIENCE, 1999, 285 (5435) : 1896 - 1899
  • [4] Methods to quantify primary plant cell wall mechanics
    Bidhendi, Amir J.
    Geitmann, Anja
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2019, 70 (14) : 3615 - 3648
  • [5] Force Feedback Controls Motor Activity and Mechanical Properties of Self-Assembling Branched Actin Networks
    Bieling, Peter
    Li, Tai-De
    Weichsel, Julian
    McGorty, Ryan
    Jreij, Pamela
    Huang, Bo
    Fletcher, Daniel A.
    Mullins, R. Dyche
    [J]. CELL, 2016, 164 (1-2) : 115 - 127
  • [6] Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome
    Blackman, Leila M.
    Cullerne, Darren P.
    Hardham, Adrienne R.
    [J]. BMC GENOMICS, 2014, 15
  • [7] Finite-element analysis of geometrical factors in micro-indentation of pollen tubes
    Bolduc, J. -F.
    Lewis, L. J.
    Aubin, C-E.
    Geitmann, A.
    [J]. BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2006, 5 (04) : 227 - 236
  • [8] Bouwmeester K., 2010, The interplay between a Phytophthora RXLR effector and an Arabidopsis lectin receptor kinase
  • [9] A slicing mechanism facilitates host entry by plant-pathogenic Phytophthora
    Bronkhorst, Jochem
    Kasteel, Michiel
    van Veen, Stijn
    Clough, Jess M.
    Kots, Kiki
    Buijs, Jesse
    van der Gucht, Jasper
    Ketelaar, Tijs
    Govers, Francine
    Sprakel, Joris
    [J]. NATURE MICROBIOLOGY, 2021, 6 (08) : 1000 - +
  • [10] From mechanical resilience to active material properties in biopolymer networks
    Burla, Federica
    Mulla, Yuval
    Vos, Bart E.
    Aufderhorst-Roberts, Anders
    Koenderink, Gijsje H.
    [J]. NATURE REVIEWS PHYSICS, 2019, 1 (04) : 249 - 263