Strategies for Accelerating Nonlinear Convergence for T-Ω Formulation

被引:7
作者
Zhou, Ping [1 ]
Lin, Dingsheng [1 ]
He, Bo [1 ]
Kher, Sameer S. [1 ]
Cendes, Zoltan J. [1 ]
机构
[1] Ansoft LLC, Pittsburgh, PA 15219 USA
关键词
Jacobian matrix; Newton-Raphson method; nonlinear convergence; transient finite element analysis (FEA); T-Omega formulation; NEWTON-RAPHSON METHOD;
D O I
10.1109/TMAG.2010.2043508
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper details the derivation of the Jacobian matrix and the residual vector associated with the NewtonRaphson iteration sequence in terms of the T-ω formulation. Then, a scheme is proposed to efficiently find the optimum relaxation factor for improving global convergence. Furthermore, to address some local convergence issues, a local damping factor that damps the updating of the nonlinear material property for the evaluation of Jacobian matrix during nonlinear iteration is introduced. © 2006 IEEE.
引用
收藏
页码:3129 / 3132
页数:4
相关论文
共 9 条
[1]   VARIOUS FEM FORMULATIONS FOR THE CALCULATION OF TRANSIENT 3D EDDY CURRENTS IN NONLINEAR MEDIA [J].
BIRO, O ;
PREIS, K ;
RICHTER, KR .
IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (03) :1307-1312
[2]   The Newton-Raphson method accelerated by using a line search - Comparison between energy functional and residual minimization [J].
Fujiwara, K ;
Okamoto, Y ;
Kameari, A ;
Ahagon, A .
IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (05) :1724-1727
[3]   Convergence properties of the Newton-Raphson method for nonlinear problems [J].
Janicke, L ;
Kost, A .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) :2505-2508
[4]   A new nonlinear anisotropic model for soft magnetic materials [J].
Lin, D ;
Zhou, P ;
Badics, Z ;
Fu, WN ;
Chen, QM ;
Cendes, ZJ .
IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (04) :963-966
[5]  
MOHAMMED A, 1987, IEEE T MAGN, V23, P3575
[6]   RESULTS FOR BENCHMARK PROBLEM-10 (STEEL PLATES AROUND A COIL) [J].
NAKATA, T ;
FUJIWARA, K .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1990, 9 (03) :181-190
[7]   IMPROVEMENTS OF CONVERGENCE CHARACTERISTICS OF NEWTON-RAPHSON METHOD FOR NONLINEAR MAGNETIC-FIELD ANALYSIS [J].
NAKATA, T ;
TAKAHASHI, N ;
FUJIWARA, K ;
OKAMOTO, N ;
MURAMATSU, K .
IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (02) :1048-1051
[8]   CHOOSING THE RELAXATION PARAMETER FOR THE SOLUTION OF NONLINEAR MAGNETIC-FIELD PROBLEMS BY THE NEWTON-RAPHSON METHOD [J].
ODWYER, J ;
ODONNELL, T .
IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (03) :1484-1487
[9]   Nonlinear T-Ω formulation including motion for multiply connected 3-D problems [J].
Zhou, P. ;
Badics, Z. ;
Lin, D. ;
Cendes, Z. J. .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) :718-721