Bearing fault diagnosis via kernel matrix construction based support vector machine

被引:10
|
作者
Wu, Chenxi [1 ,2 ]
Chen, Tefang [1 ]
Jiang, Rong [2 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha, Hunan, Peoples R China
[2] Hunan Inst Engn, Sch Mech Engn, Xiangtan, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
fault diagnosis; continuous wavelet transform; singular value decomposition; kernel matrix construction; support vector machine; ROLLING ELEMENT BEARING; CLASSIFICATION; EXTRACTION;
D O I
10.21595/jve.2017.18482
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A novel approach on kernel matrix construction for support vector machine (SVM) is proposed to detect rolling element bearing fault efficiently. First, multi-scale coefficient matrix is achieved by processing vibration sample signal with continuous wavelet transform (CWT). Next, singular value decomposition (SVD) is applied to calculate eigenvector from wavelet coefficient matrix as sample signal feature vector. Two kernel matrices i.e. training kernel and predicting kernel, are then constructed in a novel way, which can reveal intrinsic similarity among samples and make it feasible to solve nonlinear classification problems in a high dimensional feature space. To validate its diagnosis performance, kernel matrix construction based SVM (KMCSVM) classifier is compared with three SVM classifiers i.e. classification tree kernel based SVM (CTKSVM), linear kernel based SVM (L-SVM) and radial basis function based SVM (RBFSVM), to identify different locations and severities of bearing fault. The experimental results indicate that KMCSVM has better classification capability than other methods.
引用
收藏
页码:3445 / 3461
页数:17
相关论文
共 50 条
  • [1] Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network and Support Vector Machine
    Yuan, Laohu
    Lian, Dongshan
    Kang, Xue
    Chen, Yuanqiang
    Zhai, Kejia
    IEEE ACCESS, 2020, 8 : 137395 - 137406
  • [2] Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine
    Widodo, Achmad
    Kim, Eric Y.
    Son, Jong-Duk
    Yang, Bo-Suk
    Tan, Andy C. C.
    Gu, Dong-Sik
    Choi, Byeong-Keun
    Mathew, Joseph
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 7252 - 7261
  • [3] Analog Circuit Fault Diagnosis Based on Wavelet Kernel Support Vector Machine
    Guo, Ke
    Wang, Sheling
    Song, Jiahong
    2013 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS (ITA), 2013, : 395 - 399
  • [4] Fault Diagnosis of Rolling Bearing Based on Wavelet Packet Transform and Support Vector Machine
    Yang Zhengyou
    Peng Tao
    Li Jianbao
    Yang Huibin
    Jiang Haiyan
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 650 - 653
  • [5] Fault Diagnosis of Bearing Based on Fuzzy Support Vector Machine
    Ma, Haodong
    Xiong, Yi
    Fang, Hongzheng
    Gu, Lichao
    2015 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM), 2015,
  • [6] Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine
    Wu, Shuen-De
    Wu, Po-Hung
    Wu, Chiu-Wen
    Ding, Jian-Jiun
    Wang, Chun-Chieh
    ENTROPY, 2012, 14 (08) : 1343 - 1356
  • [7] EFFECT OF KERNEL FUNCTION IN SUPPORT VECTOR MACHINE FOR THE FAULT DIAGNOSIS OF PUMP
    Sakthivel, N. R.
    Saravanamurugan, S.
    Nair, Binoy B.
    Elangovan, M.
    Sugumaran, V.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2016, 11 (06) : 826 - 838
  • [8] Fault diagnosis of rolling bearing based on relevance vector machine and kernel principal component analysis
    Wang, Bo
    Liu, Shulin
    Zhang, Hongli
    Jiang, Chao
    JOURNAL OF VIBROENGINEERING, 2014, 16 (01) : 57 - 69
  • [9] Rolling bearing fault diagnosis based on empirical mode decomposition and support vector machine
    Xu K.
    Chen Z.-H.
    Zhang C.-B.
    Dong G.-Z.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2019, 36 (06): : 915 - 922
  • [10] Bearing Fault Diagnosis based on Independent Component Analysis and Optimized Support Vector Machine
    Thelaidjia, Tawfik
    Moussaoui, Abdelkrim
    Chenikher, Salah
    2015 7TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2014, : 160 - 163