Length multiplicities of hyperbolic 3-manifolds

被引:4
作者
Masters, JD [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
Conjugacy Class; Algebraic Representation; Kleinian Group; Trace Class; Length Spectrum;
D O I
10.1007/BF02810661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M = H-3/Gamma be a hyperbolic 3-manifold, where Gamma is a non-elementary Kleinian group. It is shown that the length spectrum of M is of unbounded multiplicity.
引用
收藏
页码:9 / 28
页数:20
相关论文
共 38 条
[31]   On the quandles of isometries of the hyperbolic 3-space [J].
Kai, Ryoya .
GEOMETRIAE DEDICATA, 2025, 219 (02)
[32]   The visual core of a hyperbolic 3-manifold [J].
James W. Anderson ;
Richard D. Canary .
Mathematische Annalen, 2001, 321 :989-1000
[33]   The (6, p)-arithmetic Hyperbolic Lattices in Dimension 3. [J].
Maclachlan, C. ;
Martin, G. J. .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (02) :365-382
[34]   The Minimal Growth Rate of Cocompact Coxeter Groups in Hyperbolic 3-space [J].
Kellerhals, Ruth ;
Kolpakov, Alexander .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (02) :354-372
[35]   ON THE FINITE GROUPS WITH AVERAGE LENGTH 3 OF CONJUGACY CLASSES [J].
Du, Xianglin .
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, (30) :73-78
[36]   The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores [J].
Brock, JF .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :495-535
[37]   Length spectrum compactification of the SO0(2,3)-Hitchin component [J].
Ouyang, Charles ;
Tamburelli, Andrea .
ADVANCES IN MATHEMATICS, 2023, 420
[38]   William P. Thurston: “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”: Bull. Am. Math. Soc., New Ser. 6, 357–379 (1982) [J].
Otal J.-P. .
Jahresbericht der Deutschen Mathematiker-Vereinigung, 2014, 116 (1) :3-20