Length multiplicities of hyperbolic 3-manifolds

被引:4
|
作者
Masters, JD [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
Conjugacy Class; Algebraic Representation; Kleinian Group; Trace Class; Length Spectrum;
D O I
10.1007/BF02810661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M = H-3/Gamma be a hyperbolic 3-manifold, where Gamma is a non-elementary Kleinian group. It is shown that the length spectrum of M is of unbounded multiplicity.
引用
收藏
页码:9 / 28
页数:20
相关论文
共 50 条
  • [1] Length multiplicities of hyperbolic 3-manifolds
    Joseph D. Masters
    Israel Journal of Mathematics, 2000, 119 : 9 - 28
  • [2] The length spectrum of random hyperbolic 3-manifolds
    Roig-Sanchis, Anna
    ADVANCES IN MATHEMATICS, 2025, 466
  • [3] The ortho-length spectrum for hyperbolic 3-manifolds
    Meyerhoff, GR
    QUARTERLY JOURNAL OF MATHEMATICS, 1996, 47 (187): : 349 - 359
  • [4] Homotopy hyperbolic 3-manifolds are hyperbolic
    Gabai, D
    Meyerhoff, GR
    Thurston, N
    ANNALS OF MATHEMATICS, 2003, 157 (02) : 335 - 431
  • [5] Macfarlane hyperbolic 3-manifolds
    Quinn, Joseph A.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1603 - 1632
  • [6] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [7] Horocycles in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 961 - 973
  • [8] Horocycles in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    Geometric and Functional Analysis, 2016, 26 : 961 - 973
  • [9] Systoles of hyperbolic 3-manifolds
    Adams, CC
    Reid, AW
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 128 : 103 - 110
  • [10] VOLUMES OF HYPERBOLIC 3-MANIFOLDS
    NEUMANN, WD
    ZAGIER, D
    TOPOLOGY, 1985, 24 (03) : 307 - 332