Downscaling of SMAP Soil Moisture Using Land Surface Temperature and Vegetation Data

被引:56
|
作者
Fang, Bin [1 ]
Lakshmi, Venkataraman [1 ]
Bindlish, Rajat [2 ]
Jackson, Thomas J. [3 ]
机构
[1] Univ South Carolina, Sch Earth Ocean & Environm, Columbia, SC 29208 USA
[2] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA
[3] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville Agr Res Ctr, Beltsville, MD 20705 USA
关键词
DATA ASSIMILATION SYSTEM; AMSR-E; TRIANGLE METHOD; SATELLITE DATA; RESOLUTION; VALIDATION; SMOS; RADIOMETER; RETRIEVAL; NLDAS;
D O I
10.2136/vzj2017.11.0198
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remotely sensed soil moisture retrieved by the Soil Moisture Active and Passive (SMAP) sensor is currently provided at a 9-km grid resolution. Although valuable, some applications in weather, agriculture, ecology, and watershed hydrology require soil moisture at a higher spatial resolution. In this study, a passive microwave soil moisture downscaling algorithm based on thermal inertia theory was improved for use with SMAP and applied to a data set collected at a field experiment. This algorithm utilizes a normalized difference vegetation index (NDVI) modulated relationship between daytime soil moisture and daily temperature change modeled using output variables from the land surface model of the North American Land Data Assimilation System (NLDAS) and remote sensing data from the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR). The reference component of the algorithm was developed at the NLDAS grid size (12.5 km) to downscale the SMAP Level 3 radiometer-based 9-km soil moisture to 1 km. The downscaled results were validated using data acquired in Soil Moisture Active Passive Validation Experiment 2015 (SMAPVEX15) that included in situ soil moisture and Passive Active L-band System (PALS) airborne instrument observations. The resulting downscaled SMAP estimates better characterize soil moisture spatial and temporal variability and have better overall validation metrics than the original SMAP soil moisture estimates. Additionally, the overall accuracy of the downscaled SMAP soil moisture is comparable to the PALS high spatial resolution soil moisture retrievals. The method demonstrated in this study downscales satellite soil moisture to produce a 1-km product that is not site specific and could be applied to other regions of the world using the publicly available NLDAS/Global Land Data Assimilation System data.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Multi-Temporal Evaluation of Soil Moisture and Land Surface Temperature Dynamics Using in Situ and Satellite Observations
    Pablos, Miriam
    Martinez-Fernandez, Jose
    Piles, Maria
    Sanchez, Nilda
    Vall-Ilossera, Merce
    Camps, Adriano
    REMOTE SENSING, 2016, 8 (07)
  • [32] Effect of Land-Cover Type on the SMAP Active/Passive Soil Moisture Downscaling Algorithm Performance
    Wu, Xiaoling
    Walker, Jeffrey P.
    Ruediger, Christoph
    Panciera, Rocco
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (04) : 846 - 850
  • [33] Evaluating the Variability of Surface Soil Moisture Simulated Within CMIP5 Using SMAP Data
    Xi, Xuan
    Gentine, Pierre
    Zhuang, Qianlai
    Kim, Seungbum
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (05)
  • [34] Development of a new vegetation modulated soil moisture index for the spatial disaggregation of SMAP soil moisture data product
    Sharma, J.
    Prasad, R.
    Srivastava, P. K.
    Yadav, S. A.
    Singh, S. K.
    Verma, B.
    PHYSICS AND CHEMISTRY OF THE EARTH, 2024, 135
  • [35] Downscaling essential climate variable soil moisture using multisource data from 2003 to 2010 in China
    Wang, Hui-Lin
    An, Ru
    You, Jia-jun
    Wang, Ying
    Chen, Yuehong
    Shen, Xiao-ji
    Gao, Wei
    Wang, Yi-nan
    Zhang, Yu
    Wang, Zhe
    Quaye-Ballard, Jonathan Arthur
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [36] A Value-Consistent Method for Downscaling SMAP Passive Soil Moisture With MODIS Products Using Self-Adaptive Window
    Wen, Fengping
    Zhao, Wei
    Wang, Qunming
    Sanchez, Nilda
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (02): : 913 - 924
  • [37] Global Estimates of Land Surface Water Fluxes from SMOS and SMAP Satellite Soil Moisture Data
    Sadeghi, Morteza
    Ebtehaj, Ardeshir
    Crow, Wade T.
    Gao, Lun
    Purdy, Adam J.
    Fisher, Joshua B.
    Jones, Scott B.
    Babaeian, Ebrahim
    Tuller, Markus
    JOURNAL OF HYDROMETEOROLOGY, 2020, 21 (02) : 241 - 253
  • [38] Feasibility of Downscaling Satellite-Based Precipitation Estimates Using Soil Moisture Derived from Land Surface Temperature
    Strehz, Alexander
    Brombacher, Joost
    Degen, Jelle
    Einfalt, Thomas
    ATMOSPHERE, 2023, 14 (03)
  • [39] Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application
    Prashant K. Srivastava
    Dawei Han
    Miguel Rico Ramirez
    Tanvir Islam
    Water Resources Management, 2013, 27 : 3127 - 3144
  • [40] An initial assessment of a SMAP soil moisture disaggregation scheme using TIR surface evaporation data over the continental United States
    Mishra, Vikalp
    Ellenburg, W. Lee
    Griffin, Robert E.
    Mecikalski, John R.
    Cruise, James F.
    Hain, Christopher R.
    Anderson, Martha C.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 68 : 92 - 104