Efficient symmetry-based γ-encoded DQ recoupling sequences for suppression of t1-noise in solid-state NMR spectroscopy at fast MAS

被引:21
作者
Nishiyama, Yusuke [1 ,2 ,3 ]
Agarwal, Vipin [4 ]
Zhang, Rongchun [5 ,6 ]
机构
[1] RIKEN, JEOL Collaborat Ctr, Yokohama, Kanagawa 2300045, Japan
[2] RIKEN, SPring 8 Ctr, Yokohama, Kanagawa 2300045, Japan
[3] JEOL RESONANCE Inc, Akishima, Tokyo 1968558, Japan
[4] Tata Inst Fundamental Res Hyderabad, TIFR Ctr Interdisciplinary Sci, Sy 36-P, Hyderabad 500107, India
[5] South China Univ Technol, South China Adv Inst Soft Matter Sci & Technol AI, Sch Mol Sci & Engn MoSE, Guangzhou 510640, Peoples R China
[6] Guangdong Prov Key Lab Funct & Intelligent Hybrid, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
SIMULATION; ROBUST;
D O I
10.1016/j.ssnmr.2021.101734
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state NMR spectroscopy has played a significant role in elucidating the structure and dynamics of materials and biological solids at a molecular level for decades. In particular, the H-1 double-quantum/single-quantum (DQ/SQ) chemical shift correlation experiment is widely used for probing the proximity of protons, rendering it a powerful tool for elucidating the hydrogen-bonding interactions and molecular packing of various complex molecular systems. Two factors, namely, the DQ filtering efficiency and t(1)-noise, dictate the quality of the 2D H-1 DQ/SQ spectra. Experimentally different recoupling sequences show varied DQ filtering efficiencies and t(1) noise. Herein, after a systematic search of symmetry-based DQ recoupling sequences, we report that the symmetry-based gamma-encoded RN(n)(nu)sequences show superior performance to other DQ recoupling sequences, which not only have a higher DQ recoupling efficiency but can also significantly reduce t(1)-noise. The origin of t(1)-noise is further discussed in detail via extensive numerical simulations. We envisage that such gamma-encoded RN nu n sequences are superior candidates for DQ recoupling in proton based solid-state NMR spectroscopy due to its capability of efficiently exciting DQ coherences and suppressing t(1)-noise.
引用
收藏
页数:7
相关论文
共 26 条
[1]   SIMPSON: A general simulation program for solid-state NMR spectroscopy [J].
Bak, M ;
Rasmussen, JT ;
Nielsen, NC .
JOURNAL OF MAGNETIC RESONANCE, 2000, 147 (02) :296-330
[2]   Spinning proteins, the faster, the better? [J].
Boeckmann, Anja ;
Ernst, Matthias ;
Meier, Beat H. .
JOURNAL OF MAGNETIC RESONANCE, 2015, 253 :71-79
[3]   Probing proton-proton proximities in the solid state:: High-resolution two-dimensional 1H-1H double-quantum CRAMPS NMR spectroscopy [J].
Brown, SP ;
Lesage, A ;
Elena, B ;
Emsley, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (41) :13230-13231
[4]   Applications of high-resolution 1H solid-state NMR [J].
Brown, Steven P. .
SOLID STATE NUCLEAR MAGNETIC RESONANCE, 2012, 41 :1-27
[5]   Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids [J].
Carravetta, M ;
Edén, M ;
Zhao, X ;
Brinkmann, A ;
Levitt, MH .
CHEMICAL PHYSICS LETTERS, 2000, 321 (3-4) :205-215
[6]   1H and 19F ultra-fast MAS double-quantum single-quantum NMR correlation experiments using three-spin terms of the dipolar homonuclear Hamiltonian [J].
Deschamps, Michael ;
Fayon, Franck ;
Cadars, Sylvian ;
Rollet, Anne-Laure ;
Massiot, Dominique .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (17) :8024-8030
[7]   HIGH-RESOLUTION DOUBLE-QUANTUM NMR-SPECTROSCOPY OF HOMONUCLEAR SPIN PAIRS AND PROTON CONNECTIVITIES IN SOLIDS [J].
GOTTWALD, J ;
DEMCO, DE ;
GRAF, R ;
SPIESS, HW .
CHEMICAL PHYSICS LETTERS, 1995, 243 (3-4) :314-323
[8]   Multiplicative or t1 noise in NMR spectroscopy [J].
Granwehr, J. .
APPLIED MAGNETIC RESONANCE, 2007, 32 (1-2) :113-156
[9]   Progress in proton-detected solid-state NMR (SSNMR): Super-fast 2D SSNMR collection for nano-mole-scale proteins [J].
Ishii, Yoshitaka ;
Wickramasinghe, Ayesha ;
Matsuda, Isamu ;
Endo, Yuki ;
Ishii, Yuji ;
Nishiyama, Yusuke ;
Nemoto, Takahiro ;
Kamihara, Takayuki .
JOURNAL OF MAGNETIC RESONANCE, 2018, 286 :99-109
[10]  
Juhl D.W., 2000, ANN REP NMR SPECTROS, V100, P59